MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: two integrals

  • To: mathgroup at smc.vnet.net
  • Subject: [mg79152] Re: two integrals
  • From: dimitris <dimmechan at yahoo.com>
  • Date: Fri, 20 Jul 2007 03:15:48 -0400 (EDT)
  • References: <f7kdjq$4bd$1@smc.vnet.net>

On 18     , 09:56, dimitris <dimmec... at yahoo.com> wrote:
> Any ideas for closed form expressions for the
> following integrals?
>
> In[71]:=
> Integrate[ArcTan[(1 - z^2)/z^3]*(1/(z + p)), {z, 0, 1}]
>
> In[73]:=
> Integrate[ArcTan[(1 - z^2)/z^3]*(1/(z - p)), {z, 0, 1}, PrincipalValue
> -> True]
>
> [Parameter p takes values in the range (0,1) so
> the second integral should be interpreted as a Cauchy
> principal value integral]
>
> Thanks, in advance, for your time and effort.
>
> D.A.

(Version 5.2 is used)

Thanks to help from Ajit (I also thank Daniel from WRI for
his response but unfortunately part of his solution needs
the symbolic capabilities of version 6...) I suceeded in getting
a closed form solution for the first integral

In[8]:=
Quit[]

The key is to wrap the integrand to TrigToExp

In[1]:=
int = TrigToExp[ArcTan[(1 - z^2)/z^3]*(1/(z + p))]

Out[1]=
(I*Log[1 - (I*(1 - z^2))/z^3])/(2*(p + z)) - (I*Log[1 + (I*(1 - z^2))/
z^3])/(2*(p + z))

In[2]:=
Timing[res = Integrate[int, {z, 0, 1}, Assumptions -> 0 < p < 1]]

Out[2]=
{64.968*Second, (1/2)*I*(2*Pi^2 + I*Pi*Log[p] - Log[1 - Root[1 -
2*#1^2 + #1^4 + #1^6 & , 1]]*
     Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1])] + Log[-Root[1 -
2*#1^2 + #1^4 + #1^6 & , 1]]*
     Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1])] +
I*Pi*Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]] +
    I*Pi*Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]))] -
Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]]*
     Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]))] + Log[1 -
Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]]*
     Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2])] + Log[1 -
Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3]]*
     Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3])] - Log[-Root[1 -
2*#1^2 + #1^4 + #1^6 & , 3]]*
     Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3])] + I*Pi*Log[-1 +
Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]] -
    I*Pi*Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]] - Log[-1 + Root[1 -
2*#1^2 + #1^4 + #1^6 & , 4]]*
     Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]))] + Log[Root[1
- 2*#1^2 + #1^4 + #1^6 & , 4]]*
     Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]))] - Log[1 -
Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5]]*
     Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5])] + Log[-Root[1 -
2*#1^2 + #1^4 + #1^6 & , 5]]*
     Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5])] +
I*Pi*Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]] +
    I*Pi*Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]))] -
Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]]*
     Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]))] + Log[1 -
Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]]*
     Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6])] - PolyLog[2,
(-1 + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1])/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1])] + PolyLog[2, Root[1
- 2*#1^2 + #1^4 + #1^6 & , 1]/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1])] + PolyLog[2, (-1 +
Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2])/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2])] - PolyLog[2, Root[1
- 2*#1^2 + #1^4 + #1^6 & , 2]/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2])] + PolyLog[2, (-1 +
Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3])/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3])] - PolyLog[2, Root[1
- 2*#1^2 + #1^4 + #1^6 & , 3]/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3])] - PolyLog[2, (-1 +
Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4])/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4])] + PolyLog[2, Root[1
- 2*#1^2 + #1^4 + #1^6 & , 4]/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4])] - PolyLog[2, (-1 +
Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5])/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5])] + PolyLog[2, Root[1
- 2*#1^2 + #1^4 + #1^6 & , 5]/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5])] + PolyLog[2, (-1 +
Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6])/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6])] - PolyLog[2, Root[1
- 2*#1^2 + #1^4 + #1^6 & , 6]/
      (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6])])}

As we see the timing looks quite reasonable.
A chack now

In[3]:=
{(N[#1, 30] & )[res /. p -> 5/7], NIntegrate[ArcTan[(1 - z^2)/z^3]*(1/
(z + p)) /. p -> 5/7, {z, 0, 1}, WorkingPrecision -> 50,
   PrecisionGoal -> 30]}

Out[3]=
{1.094102857371793922707221438080436938524900902338`30.15051499783199
+ 0``30.111456845588528*I,
  1.09410285737179392270722143808042886494086929837`30.25861428981342}

Now

In[14]:=
ToRadicals[res]

Out[14]=
(*output ommited*)

Can we simplify Output 14 more?

Thanks

Dimitris




  • Prev by Date: graphing traces of complicated evaluations (improved)
  • Next by Date: Re: Embedded Style Sheets
  • Previous by thread: Re: two integrals
  • Next by thread: Re: two integrals