Re: two integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg79152] Re: two integrals
- From: dimitris <dimmechan at yahoo.com>
- Date: Fri, 20 Jul 2007 03:15:48 -0400 (EDT)
- References: <f7kdjq$4bd$1@smc.vnet.net>
On 18 , 09:56, dimitris <dimmec... at yahoo.com> wrote: > Any ideas for closed form expressions for the > following integrals? > > In[71]:= > Integrate[ArcTan[(1 - z^2)/z^3]*(1/(z + p)), {z, 0, 1}] > > In[73]:= > Integrate[ArcTan[(1 - z^2)/z^3]*(1/(z - p)), {z, 0, 1}, PrincipalValue > -> True] > > [Parameter p takes values in the range (0,1) so > the second integral should be interpreted as a Cauchy > principal value integral] > > Thanks, in advance, for your time and effort. > > D.A. (Version 5.2 is used) Thanks to help from Ajit (I also thank Daniel from WRI for his response but unfortunately part of his solution needs the symbolic capabilities of version 6...) I suceeded in getting a closed form solution for the first integral In[8]:= Quit[] The key is to wrap the integrand to TrigToExp In[1]:= int = TrigToExp[ArcTan[(1 - z^2)/z^3]*(1/(z + p))] Out[1]= (I*Log[1 - (I*(1 - z^2))/z^3])/(2*(p + z)) - (I*Log[1 + (I*(1 - z^2))/ z^3])/(2*(p + z)) In[2]:= Timing[res = Integrate[int, {z, 0, 1}, Assumptions -> 0 < p < 1]] Out[2]= {64.968*Second, (1/2)*I*(2*Pi^2 + I*Pi*Log[p] - Log[1 - Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1]]* Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1])] + Log[-Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1]]* Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1])] + I*Pi*Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]] + I*Pi*Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]))] - Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]]* Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]))] + Log[1 - Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]]* Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2])] + Log[1 - Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3]]* Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3])] - Log[-Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3]]* Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3])] + I*Pi*Log[-1 + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]] - I*Pi*Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]] - Log[-1 + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]]* Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]))] + Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]]* Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]))] - Log[1 - Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5]]* Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5])] + Log[-Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5]]* Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5])] + I*Pi*Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]] + I*Pi*Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]))] - Log[Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]]* Log[-(1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]))] + Log[1 - Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]]* Log[1/(p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6])] - PolyLog[2, (-1 + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1])/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1])] + PolyLog[2, Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1]/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 1])] + PolyLog[2, (-1 + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2])/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2])] - PolyLog[2, Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2]/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 2])] + PolyLog[2, (-1 + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3])/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3])] - PolyLog[2, Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3]/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 3])] - PolyLog[2, (-1 + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4])/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4])] + PolyLog[2, Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4]/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 4])] - PolyLog[2, (-1 + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5])/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5])] + PolyLog[2, Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5]/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 5])] + PolyLog[2, (-1 + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6])/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6])] - PolyLog[2, Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6]/ (p + Root[1 - 2*#1^2 + #1^4 + #1^6 & , 6])])} As we see the timing looks quite reasonable. A chack now In[3]:= {(N[#1, 30] & )[res /. p -> 5/7], NIntegrate[ArcTan[(1 - z^2)/z^3]*(1/ (z + p)) /. p -> 5/7, {z, 0, 1}, WorkingPrecision -> 50, PrecisionGoal -> 30]} Out[3]= {1.094102857371793922707221438080436938524900902338`30.15051499783199 + 0``30.111456845588528*I, 1.09410285737179392270722143808042886494086929837`30.25861428981342} Now In[14]:= ToRadicals[res] Out[14]= (*output ommited*) Can we simplify Output 14 more? Thanks Dimitris