Re: Value of E
- To: mathgroup at smc.vnet.net
- Subject: [mg77386] Re: [mg77301] Value of E
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Thu, 7 Jun 2007 04:06:41 -0400 (EDT)
- Organization: Deep Space Corps of Engineers
- References: <30949593.1181133668382.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
Both solutions depend on the ArcSin argument: Off[Solve::"ifun"] Solve[(I*a^(I*ArcSin[3/5]) - I*a^-(I*ArcSin[3/5]))/2 == 3/5, a] N@% {{a -> (-(4/5) - (3*I)/5)^(-(I/ArcSin[3/5]))}, {a -> (4/5 - = (3*I)/5)^(-(I/ArcSin[3/5]))}} {{a -> 0.020608916569560962 + 0.*I}, {a -> 0.36787944117144233 + 0.*I}} Solve[(I*a^(I*ArcSin[arg]) - I*a^-(I*ArcSin[arg]))/2 == arg, a] {{a -> (-\[ImaginaryI] arg - Sqrt[1 - arg^2])^-\[ImaginaryI]/ ArcSin[arg]}, {a -> (-\[ImaginaryI] arg + Sqrt[ 1 - arg^2])^-\[ImaginaryI]/ArcSin[arg]}} Bobby On Wed, 06 Jun 2007 06:22:44 -0500, Jeff Albert <albertj001 at hawaii.rr.co= m> = wrote: > Now we all know that: > > In[112]:=N[E,10] >> From In[112]:=2.718281828459045 > > and that > > In[113]:=N[(I*E^(I*ArcSin[3/5])-I*E^-(I*ArcSin[3/5]))/2,10] >> From In[113]:=-0.6 + 0.*I. > > Can someone please explain: > > In[117]:=NSolve[(I*A^(I*ArcSin[3/5])-I*A^-(I*ArcSin[3/5]))/2==3/= 5,A] >> From In[117]:=Solve::ifun: Inverse functions are being used by Solv= e, so > some solutions may not be found. >> From In[117]:={{A -> 0.020608916569560966 + 0.*I}, {A -> = >> 0.36787944117144233 > + 0.*I}} > > Where it turns out that the first solution seems to depend on the = > argument > for ArcSin[], but the second does not. Indeed one even finds: > > In[115]:=0.36787944117144233^(I*Pi) >> From In[115]:=-1. - 1.2246063538223773*^-16*I > > Jeff Albert > > > > -- = DrMajorBob at bigfoot.com