simplification of 0/0 to 1?
- To: mathgroup at smc.vnet.net
- Subject: [mg77510] simplification of 0/0 to 1?
- From: dimitris <dimmechan at yahoo.com>
- Date: Mon, 11 Jun 2007 04:22:48 -0400 (EDT)
Hi fellas. This appeared in another forum as part of a question what another CAS does. Just of curiosity I check Mathematica's performance (5.2). The result was poor! Here is the expression In[16]:= o = (Log[2]*Cos[Pi/12] - Log[2]*Sin[Pi/12] - 2*Cos[Pi/12] + 2*Sin[Pi/ 12] + Sqrt[2] + 2*Log[Cos[Pi/12] - Sin[Pi/12]]*Cos[Pi/12] - 2*Log[Cos[Pi/12] - Sin[Pi/12]]*Sin[Pi/12])/ (Log[2]*Cos[Pi/12] - Log[2]*Sin[Pi/12] + 2*Log[Cos[Pi/12] - Sin[Pi/ 12]]*Cos[Pi/12] - 2*Log[Cos[Pi/12] - Sin[Pi/12]]*Sin[Pi/12]) Out[16]= (Sqrt[2] + (-1 + Sqrt[3])/Sqrt[2] - (1 + Sqrt[3])/Sqrt[2] - ((-1 + Sqrt[3])*Log[2])/(2*Sqrt[2]) + ((1 + Sqrt[3])*Log[2])/(2*Sqrt[2]) - ((-1 + Sqrt[3])*Log[-((-1 + Sqrt[3])/(2*Sqrt[2])) + (1 + Sqrt[3])/(2*Sqrt[2])])/ Sqrt[2] + ((1 + Sqrt[3])*Log[-((-1 + Sqrt[3])/(2*Sqrt[2])) + (1 + Sqrt[3])/(2*Sqrt[2])])/Sqrt[2])/ (-(((-1 + Sqrt[3])*Log[2])/(2*Sqrt[2])) + ((1 + Sqrt[3])*Log[2])/ (2*Sqrt[2]) - ((-1 + Sqrt[3])*Log[-((-1 + Sqrt[3])/(2*Sqrt[2])) + (1 + Sqrt[3])/ (2*Sqrt[2])])/Sqrt[2] + ((1 + Sqrt[3])*Log[-((-1 + Sqrt[3])/(2*Sqrt[2])) + (1 + Sqrt[3])/ (2*Sqrt[2])])/Sqrt[2]) Watch now a really bad performance! In[17]:= (Simplify[#1[o]] & ) /@ {Numerator, Denominator} Out[17]= {0, 0} That is Mathematica simplifies succesfully both the numerator and denominator to zero. So, you wonder what goes wrong? Try now to simplify the whole expression! In[19]:= Simplify[o] Out[19]= 1 A very weird result to my opinion! Simplification of 0/0 to 1? I think no simplification or some warning messages would be much better than 1! Note also that In[20]:= RootReduce[o] Out[20]= 1 Dimitris
- Follow-Ups:
- Re: simplification of 0/0 to 1?
- From: Murray Eisenberg <murray@math.umass.edu>
- Re: simplification of 0/0 to 1?