general
- To: mathgroup at smc.vnet.net
- Subject: [mg78108] general
- From: dimitris <dimmechan at yahoo.com>
- Date: Sat, 23 Jun 2007 07:05:38 -0400 (EDT)
For newbies maybe the use of "stored cache results" will appear confusing here is one example of this phenomenon. In[1]:= f[x_, a_, b_, c_, d_] = x^(c - 1)*(Exp[-(x/d)]/(1 + Exp[(-a)*x - b])) Out[1]= x^(-1 + c)/(E^(x/d)*(1 + E^(-b - a*x))) In[2]:= ex = Thread[{a, b, c, d} -> {3, 2, 1, 4}] Out[2]= {a -> 3, b -> 2, c -> 1, d -> 4} In[3]:= Integrate[f[x, a, b, c, d] /. ex, {x, 0, Infinity}] Out[3]= (1/3)*(-1)^(1/12)*E^(1/6)*((-1)^(5/6)*Log[-(-1)^(1/12) + E^(1/6)] - (-1)^(5/6)*Log[(-1)^(1/12) + E^(1/6)] + (-1)^(2/3)*Log[-(-1)^(1/4) + E^(1/6)] - (-1)^(2/3)*Log[(-1)^(1/4) + E^(1/6)] + I*Log[-(-1)^(5/12) + E^(1/6)] - I*Log[(-1)^(5/12) + E^(1/6)] + (-1)^(1/3)*Log[-(-1)^(7/12) + E^(1/6)] - (-1)^(1/3)*Log[(-1)^(7/12) + E^(1/6)] + (-1)^(1/6)*Log[-(-1)^(3/4) + E^(1/6)] - (-1)^(1/6)*Log[(-1)^(3/4) + E^(1/6)] + Log[-(-1)^(11/12) + E^(1/6)] - Log[(-1)^(11/12) + E^(1/6)]) In[4]:= FullSimplify[%] Out[4]= (1/3)*(-1)^(1/12)*E^(1/6)*Log[((1 + 2/(-1 + (-1)^(1/4)*E^(1/6)))^(-1)^(1/6)*(1 + 2/(-1 + (-1)^(5/12)*E^(1/6)))^(-1)^(1/3)* (1 + 2/(-1 + (-1)^(7/12)*E^(1/6)))^I*(1 + 2/(-1 + (-1)^(3/4)*E^(1/6)))^(-1)^(2/3)* (1 + 2/(-1 + (-1)^(11/12)*E^(1/6)))^(-1)^(5/6)*(-(-1)^(11/12) + E^(1/6)))/((-1)^(11/12) + E^(1/6))] Now evaluate again the integral In[5]:= Integrate[f[x, a, b, c, d] /. ex, {x, 0, Infinity}] Out[5]= (1/3)*(-1)^(1/12)*E^(1/6)*Log[((1 + 2/(-1 + (-1)^(1/4)*E^(1/6)))^(-1)^(1/6)*(1 + 2/(-1 + (-1)^(5/12)*E^(1/6)))^(-1)^(1/3)* (1 + 2/(-1 + (-1)^(7/12)*E^(1/6)))^I*(1 + 2/(-1 + (-1)^(3/4)*E^(1/6)))^(-1)^(2/3)* (1 + 2/(-1 + (-1)^(11/12)*E^(1/6)))^(-1)^(5/6)*(-(-1)^(11/12) + E^(1/6)))/((-1)^(11/12) + E^(1/6))] Dimitris