Re: Mind+Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg78112] Re: Mind+Mathematica
- From: "David W.Cantrell" <DWCantrell at sigmaxi.net>
- Date: Sat, 23 Jun 2007 07:07:40 -0400 (EDT)
- References: <200706210945.FAA26122@smc.vnet.net> <f5gat7$gc8$1@smc.vnet.net>
Andrzej Kozlowski <akoz at mimuw.edu.pl> wrote: > On 21 Jun 2007, at 18:45, dimitris wrote: > > > The integral > > > > Integrate[Sin[z]*Sin[z^3 + z], {z, 0, Infinity}] > > > > (as I was informed) > > > > gives a incorrectly divergent message. > > The integral however is convergent. > > > > The following is part of my response to another forum. > > Demonstrate how vital is to help Mathematica sometimes. > > > > In[2]:= > > $Version > > > > Out[2]= > > "5.2 for Microsoft Windows (June 20, 2005)" > > > > In[3]:= > > int=Integrate[Sin[z]*Sin[z^3 + z], {z, 0, Infinity}](*the integral > > stays unevaluated*) > > > > Out[3]= > > Integrate[Sin[z]*Sin[z + z^3], {z, 0, Infinity}] > > > > In[3]:= > > int2 = (int /. Integrate[f_, x_] :> Integrate[#1, {z, 0, Infinity}] > > & ) /@ Expand[Sin[z]*TrigExpand[Sin[z^3 + z]]] > > > > Out[3]= > > (1/72)*(2*Sqrt[6]*Pi*(BesselI[1/3, (4*Sqrt[2/3])/3] - BesselJ[1/3, > > (4*Sqrt[2/3])/3]) + > > 3*Gamma[1/3]*(2*Sqrt[3] - Sqrt[2]*BesselI[-(1/3), (4*Sqrt[2/3])/ > > 3]*Gamma[2/3] - Sqrt[2]*BesselJ[-(1/3), (4*Sqrt[2/3])/3]*Gamma[2/3])) > > + Integrate[Cos[z]*Sin[z]*Sin[z^3], {z, 0, Infinity}] > > > > In[4]:= > > int3 = (1/2)*Integrate[Sin[2*z]*Sin[z^3], {z, 0, Infinity}] > > > > Out[4]= > > (Pi*(AiryAi[-(2/3^(1/3))] - AiryAi[2/3^(1/3)]))/(4*3^(1/3)) > > > > In[5]:= > > FullSimplify[int2 /. Integrate[x___] :> int3] > > > > Out[5]= > > (-2*3^(1/6)*Pi*AiryAi[2/3^(1/3)] + Gamma[1/3])/(4*Sqrt[3]) > > > > In[6]:= > > N[%, 40] > > > > Out[6]= > > 0.295741225849781931593673891336119670357883693300484102195`40. > > > > Brought to you by M^2 > > (Man+Mathematica!) > > > > Dimitris > > > > PS > > I spent almost two hours to figure out a workaround. > > How ancient Greeks said: > > "It is not easy to get Goods" > > > > PS2 > > Enjoy Mathematics and Mathematica! > > > > > > However... > > Integrate[TrigToExp[Sin[z]*Sin[z^3 + z]], {z, 0, Infinity}] > > (1/6)*((-Sqrt[2])*BesselK[-(1/3), (4*Sqrt[2/3])/3] - (3*Pi)/Gamma[- > (1/3)]) > > N[%, 10] > 0.29574122584978190891740677731`10. > > So who needs Mind when you have Mathematica 6.0 ? Then I'm curious. What is the result of using just Integrate[Sin[z]*Sin[z^3 + z], {z, 0, Infinity}] in version 6? Does it return the integral unevaluated, together with a statement about divergence? If so, that's a bug. And one would then need to use a bit of mind to think that Mathematica 6 might be wrong and that TrigToExp might help it get a correct answer. David
- References:
- Mind+Mathematica
- From: dimitris <dimmechan@yahoo.com>
- Mind+Mathematica