Re: Re: My problem when solving a system of equations
- To: mathgroup at smc.vnet.net
- Subject: [mg78137] Re: [mg78071] Re: My problem when solving a system of equations
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Sat, 23 Jun 2007 07:20:30 -0400 (EDT)
- References: <f5dkv7$13j$1@smc.vnet.net> <9728183.1182542882326.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
Same output here, in v5.2, no errors in v6. The v6 outputs are {{p -> 2.29251}} {{pA -> 4.44537, p1 -> 2.31915, p2 -> 2.25392, disA -> 0.996607}, {pA -> 3.97324, p1 -> 4.9583, p2 -> 2.9492, disA -> 1.73173}} For simplicity and convenience, I'd write the Select and DeleteCases cal= ls = this way: SNB = DeleteCases[NB, {_ -> _Complex}] BR = DeleteCases[B, {(_ -> _Complex) ..}]; and SB = Select[DeleteCases[BR, {___, _ -> _?Negative, ___}], pA > disA /. # &] or SB = DeleteCases[ BR, {___, _ -> _?Negative, ___} | _?(pA <= disA /. # &)] Bobby On Fri, 22 Jun 2007 05:40:52 -0500, dimitris <dimmechan at yahoo.com> wrote= : > Hi. > > Quit the session. > This is what I got. > > In[1]:= > a = 24; > b = 5; > c = 25; > d = 4; > cA = 3; > cB = 2; > t = 5; > alpha = 0; > bta = 0.6; > NB = NSolve[{-d(p - cB) + c - d*p == (p - cB)(c - d*p)^2/t}, {p}= ]; > SNB = DeleteCases[NB, {p -> _Complex}] > B = NSolve[{(alpha + (1 - alpha - bta)*(0.5 - ((d/ > 2)*(p1^2 - p2^2) - c*(p1 - p2))/(2t) - ((b/2)*(( > pA - disA)^2 - pA^2) + a*disA)/(2t)))*(a - b*pA - b*(pA - > cA)) - (1 - alpha - bta)*((p1 - cB)*(c - d* > p1) + (pA - disA - cA)*(a - b*(pA - > disA)) - (pA - cA)*(a - b*pA))*(-( > a - b*pA)/( > 2t)) == 0, (1 - alpha - bta)*((a - b*(pA - > disA) - > b(pA - disA - cA))*(0.5 + ((d/2)*( > p1^2 - p2^2) - c*( > p1 - p2))/(2t) + ((b/2)*((pA - > disA)^2 - pA^2) + a*disA)/(2t)) + > (( > p1 - cB)*(c - > d*p1) + (pA - disA - cA)(a - b*(pA - disA)) - (pA - > cA)(a - b*pA))*(-(a - b*(pA - disA))/( > 2t))) == 0, (1 - alpha)*((c - d*p1 - d*(p1 - > cB))*(0.5 + ((d/2)*(p1^2 - p2^2) - c*(p1 - > p2))/(2t)) + (p1 - cB)*(c - d*p1)*(- > c + d*p1)/(2t)) + (1 - > alpha - bta)*(((pA - disA - cA)*(a - > b*(pA - disA)) - (pA - cA)*(a - b* > pA))*(-c + d*p1)/(2t) + (c - d*p1 - d( > p1 - cB))*(( > b/2)((pA - disA)^2 - pA^2) + a*disA)/(2t)) == > 0, (1 - alpha)*((c - d*p2 - d(p2 - cB))*( > 0.5 - ((d/ > 2)*(p1^2 - p2^2) - c*(p1 - p2))/(2t)) + ( > p2 - cB)*(c - d*p2)*(-c + d*p2)/( > 2t)) - (1 - alpha - bta)*(c - d*p2 - d(p2 - > cB))*(( > b/2)*((pA - disA)^2 - pA^2) + a*disA)/( > 2t) == 0}, {pA, p1, p2, disA}]; > BR = DeleteCases[B, {pA -> _Complex, p1 -> _Complex, > p2 -> _Complex, disA -> _Complex}]; > SB = Select[BR, And @@ (({pA > 0, p1 > 0, p2 > > 0, disA > 0, pA - disA > 0} /. #)) &] > > > Out[11]= > {{p\[Rule]2.29251}} > >> From In[1]:= > \!\(\* > RowBox[{\(General::"ovfl"\), \(\(:\)\(\ \)\), "\<\"Overflow occurred= > in > computation. \\!\\(\\* > ButtonBox[\\\"More...\\\", ButtonStyle->\\\"RefGuideLinkText\\\"= , > \ > ButtonFrame->None, ButtonData:>\\\"General::ovfl\\\"]\\)\"\>"}]\) > >> From In[1]:= > \!\(\* > RowBox[{\(General::"ovfl"\), \(\(:\)\(\ \)\), "\<\"Overflow occurred= > in > computation. \\!\\(\\* > ButtonBox[\\\"More...\\\", ButtonStyle->\\\"RefGuideLinkText\\\"= , > \ > ButtonFrame->None, ButtonData:>\\\"General::ovfl\\\"]\\)\"\>"}]\) > >> From In[1]:= > \!\(\* > RowBox[{\(General::"ovfl"\), \(\(:\)\(\ \)\), "\<\"Overflow occurred= > in > computation. \\!\\(\\* > ButtonBox[\\\"More...\\\", ButtonStyle->\\\"RefGuideLinkText\\\"= , > \ > ButtonFrame->None, ButtonData:>\\\"General::ovfl\\\"]\\)\"\>"}]\) > >> From In[1]:= > \!\(\* > RowBox[{\(General::"stop"\), \(\(:\)\(\ \)\), "\<\"Further output > of \\!\\(General :: \\\"ovfl\\\"\\) will be suppressed during this= > \ > calculation. \\!\\(\\*ButtonBox[\\\"More...\\\", \ > ButtonStyle->\\\"RefGuideLinkText\\\", ButtonFrame->None, \ > ButtonData:>\\\"General::stop\\\"]\\)\"\>"}]\) > > Out[14]= > {{pA\[Rule]3.\ > 9732432017395564125192881280440459970239458049155570290659727205464200= 58294383\ > 598890842765930734752225321438217919715672292159,p1\[Rule]4.\ > 9583020205953198426844437490276847987374968830138184752206982442835052= 99552283\ > 746464263057828871991290065319494660363196793637,p2\[Rule]2.\ > 9492043120958567848661780700152290929443792979472395124432261753037846= 09762982\ > 212035816978006166136210705386558781550333832228,disA\[Rule]1.\ > 7317345095455130836574595752515783213548027500930796460910004112980812= 55083276\ > 2752868835871074875089387169154659532655501459707},{pA\[Rule]4.\ > 4453741673000709391848598582133786788222599587325774958959075071516186= 91880549\ > 660415122202305507338705522502612851605862635436,p1\[Rule]2.\ > 3191544666381207575033273744035069978770949953159758125555358123091317= 09076747\ > 313776308520736763603708360710094963211884291417,p2\[Rule]2.\ > 2539202474547679263108488307500266352058951825911431165934917794312904= 07927731\ > 601498154267807767823951092934390534865277197642,disA\[Rule]0.\ > 9966066322077992533144866328594633845356760754716330960239718093767669= 93819562\ > 5934892093572991329922317150799668794322107434808}} > > Dimitris > > > lovei... at gmail.com : >> Hi, guys, >> >> I was trying to solve a system of nonlinear equations. However, >> whenever I run it, Mathematica always returns: >> " ReplaceAll::reps: {-0.04\(-24 + 5\pA)\((25 - 4\p1)\(-2 + p1) - (24 = - >> \ >> 5\pA)\(-3 + pA) + (-3 - disA + pA)\(24 - 5\(-disA + pA))) + 0.4\(\ >> \[LeftSkeleton]1\[RightSkeleton])\(\[LeftSkeleton]1\[RightSkeleton]) >> == 0, \ >> \[LeftSkeleton]3\[RightSkeleton]} is neither a list of replacement >> rules nor \ >> a valid dispatch table, and so cannot be used for replacing. " >> >> I don't know what this means and how to deal with it. >> >> Below is my code for your reference: >> >> a = 24; >> b = 5; >> c = 25; >> d = 4; >> cA = 3; >> cB = 2; >> t = 5; >> alpha = 0; >> bta = 0.6; >> NB = NSolve[{-d(p - cB) + c - d*p == (p - cB)(c - d*p)^2/t}, {p= }]; >> SNB = DeleteCases[NB, {p -> _Complex}] >> B = NSolve[{(alpha + (1 - alpha - bta)*(0.5 - ((d/ >> 2)*(p1^2 - p2^2) - c*(p1 - p2))/(2t) - ((b/2)*(( >> pA - disA)^2 - pA^2) + a*disA)/(2t)))*(a - b*pA - b*(pA - >> cA)) - (1 - alpha - bta)*((p1 - cB)*(c - d* >> p1) + (pA - disA - cA)*(a - b*(pA - >> disA)) - (pA - cA)*(a - b*pA))*(-( >> a - b*pA)/( >> 2t)) == 0, (1 - alpha - bta)*((a - b*(pA = - >> disA) - >> b(pA - disA - cA))*(0.5 + ((d/2)*( >> p1^2 - p2^2) - c*( >> p1 - p2))/(2t) + ((b/2)*((pA - >> disA)^2 - pA^2) + a*disA)/(2t)) += >> (( >> p1 - cB)*(c - >> d*p1) + (pA - disA - cA)(a - b*(pA - disA)) - (pA - >> cA)(a - b*pA))*(-(a - b*(pA - disA))/( >> 2t))) == 0, (1 - alpha)*((c - d*p1 - d*(p1 - >> cB))*(0.5 + ((d/2)*(p1^2 - p2^2) - c*(p1 - >> p2))/(2t)) + (p1 - cB)*(c - d*p1)*(- >> c + d*p1)/(2t)) + (1 - >> alpha - bta)*(((pA - disA - cA)*(a - >> >> b*(pA - disA)) - (pA - cA)*(a - b* >> pA))*(-c + d*p1)/(2t) + (c - d*p1 - d( >> p1 - cB))*(( >> b/2)((pA - disA)^2 - pA^2) + a*disA)/(2t)) === >> 0, (1 - alpha)*((c - d*p2 - d(p2 - cB))*( >> 0.5 - ((d/ >> 2)*(p1^2 - p2^2) - c*(p1 - p2))/(2t)) + ( >> p2 - cB)*(c - d*p2)*(-c + d*p2)/( >> 2t)) - (1 - alpha - bta)*(c - d*p2 - d(p2 - >> cB))*(( >> b/2)*((pA - disA)^2 - pA^2) + a*disA)/(= >> 2t) == 0}, {pA, p1, p2, disA}]; >> BR = DeleteCases[B, {pA -> _Complex, p1 -> _Complex, >> p2 -> _Complex, disA -> _Complex}]; >> SB = Select[BR, And @@ (({pA > 0, p1 > 0, p2 > >> 0, disA > 0, pA - disA > 0} /. #)) &] > > > -- = DrMajorBob at bigfoot.com