GenerateConditions->False gives fine result!
- To: mathgroup at smc.vnet.net
- Subject: [mg73815] GenerateConditions->False gives fine result!
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Thu, 1 Mar 2007 06:13:19 -0500 (EST)
I want to mention one case where GenerateConditions->False gives desirable result In[11]:= Quit In[1]:= (1/(2*Pi*I))*Integrate[q*(Exp[(-I)*q*x]/Sqrt[q^2 + t^2]), {q, - Infinity, Infinity}] Integrate::idiv: Integral of q/(E^(I*q*x)*Sqrt[q^2 + t^2]) does not converge \ on {-=E2=88=9E,=E2=88=9E}. Out[1]= -((I*Integrate[q/(E^(I*q*x)*Sqrt[q^2 + t^2]), {q, -Infinity, Infinity}])/(2*Pi)) HOWEVER In[7]:= (1/(2*Pi*I))*Integrate[ComplexExpand[q*(Exp[(-I)*q*x]/Sqrt[q^2 + t^2])], {q, -Infinity, Infinity}, GenerateConditions -> False] (FullSimplify[#1, t > 0 && x > 0] & )[%] Out[7]= -((Sqrt[t^2]*BesselK[1, Sqrt[x^2]/Sqrt[1/t^2]]*Sign[x])/Pi) Out[8]= -((t*BesselK[1, t*x])/Pi) (*check*) In[24]:= -((t*BesselK[1, t*x])/Pi) /. {t -> 3, x -> 2} N[%] Out[24]= -((3*BesselK[1, 6])/Pi) Out[25]= -0.001283348797177626 In[30]:= Chop[Block[{Message}, (1/(2*Pi*I))*NIntegrate[q*(Exp[(-I)*q*x]/ Sqrt[q^2 + t^2]) /. {t -> 3, x -> 2}, {q, -Infinity, Infinity}, Method -> Oscillatory]]] Out[30]= -0.0012833487971660698 Dimitris