Re: Definite Integration vs Newton-Leibniz formula
- To: mathgroup at smc.vnet.net
- Subject: [mg74332] Re: Definite Integration vs Newton-Leibniz formula
- From: Peter Pein <petsie at dordos.net>
- Date: Mon, 19 Mar 2007 01:58:20 -0500 (EST)
- References: <etik7c$j46$1@smc.vnet.net>
dimitris schrieb: > Consider the following function > > f[x_] = Sin[x^3]Log[x] > > Then > > Integrate[f[x], {x, 0, 1}] > {% // N, NIntegrate[f[x], {x, 0, 1}]} > > (-(1/16))*HypergeometricPFQ[{2/3, 2/3}, {3/2, 5/3, 5/3}, -(1/4)] > {-0.060865478966467726, -0.06086547896286495} > > Let evaluate first the indefinite integral and then apply the Newton- > Leibniz formula. > > F[x_] = Integrate[Sin[x^3]Log[x], x] > > (1/(6*x^2))*(-3*I*x^3*HypergeometricPFQ[{1/3, 1/3}, {4/3, 4/3}, (- > I)*x^3] + > 3*I*x^3*HypergeometricPFQ[{1/3, 1/3}, {4/3, 4/3}, I*x^3] + > (3*(((-I)*x^3)^(2/3) + (I*x^3)^(2/3))*Gamma[4/3] - ((- > I)*x^3)^(2/3)*Gamma[1/3, (-I)*x^3] - (I*x^3)^(2/3)*Gamma[1/3, > I*x^3])*Log[x]) > > Limit[F[x], x -> 1, Direction -> 1] - Limit[F[x], x -> 0, Direction -> > -1] > (1/2)*I*(-HypergeometricPFQ[{1/3, 1/3}, {4/3, 4/3}, -I] + > HypergeometricPFQ[{1/3, 1/3}, {4/3, 4/3}, I]) > > Of course > > %//N//Chop > -0.060865478966467726 > > as it should be. > > But why the definite integral return a different value? > > I believe that integrals like the above are evaluated by first > determination of the antiderivative and then evaluation > at endpoints. > > Using a code for Limit adopted from a post Daniel Lichtblau, in order > to see what limits are evaluated > by Integrate I got more confused. > > Unprotect[Limit]; > Limit[a___] := Null /; (Print[InputForm[limit[a]]]; False) > > Integrate[f[x],{x,0,1}] > > limit[0, x -> 0, Direction -> -1, Assumptions -> True] > limit[(-1 + x)^2*(3*Cos[1] - Sin[1]/2) + (-1 + x)*Sin[1], x -> 1, > Direction -> 1, > Assumptions -> True] > (-(1/16))*HypergeometricPFQ[{2/3, 2/3}, {3/2, 5/3, 5/3}, -(1/4)] > > Can somebody give me insight what is going? > > Thanks a lot > Dimitris > > Hi Dimitris, these limits occur during the search for singularities at the endpoints: f[x_] := Sin[x^3]*Log[x]; Off[General::spell1]; Unprotect[Limit]; Limit[a___] := Null /;(Print[InputForm[limit[a]]]; False) Limit[Normal[Series[f[x], {x, #1, 2}]], x -> #1]& /@ {0, 1}; --> limit[0, x -> 0] limit[(-1 + x)^2*(3*Cos[1] - Sin[1]/2) + (-1 + x)*Sin[1], x -> 1] I'm afraid, I can only guess, why Integrate[f[x], {x, 0, 1}] --> (-(1/16))*HypergeometricPFQ[{2/3, 2/3}, {3/2, 5/3, 5/3}, -(1/4)] and {-1, 1} .(Limit[F[z], z -> #1, Direction -> #2] & @@@{{0, -1}, {1, 1}}) --> (1/2)*I*(-HypergeometricPFQ[{1/3, 1/3}, {4/3, 4/3}, -I] + HypergeometricPFQ[{1/3, 1/3}, {4/3, 4/3}, I]) differ formally. Maybe Mathematica has got the latter and does internally sth. like a[k_][x_] = FunctionExpand[ (Pochhammer[1/3, k]/Pochhammer[4/3, k])^2 * x^k / k!] --> x^k/((1 + 3*k)^2*Gamma[1 + k]) FullSimplify[(I/2)*(a[k][I] - a[k][-I]), k >= 0 && k \[Element] Integers] --> -(Sin[(k*Pi)/2]/((1 + 3*k)^2*k!)) FullSimplify[% /. k -> 2*i - 1, i \[Element] Integers && i >= 1] --> (-1)^i/(4*(1 - 3*i)^2*Gamma[2*i]) Sum[%, {i, 1, Infinity}] -->(-(1/16))*HypergeometricPFQ[{2/3, 2/3}, {3/2, 5/3, 5/3}, -(1/4)] Peter