MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: how to find complete integral of pde

  • To: mathgroup at smc.vnet.net
  • Subject: [mg74436] Re: how to find complete integral of pde
  • From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
  • Date: Wed, 21 Mar 2007 02:51:15 -0500 (EST)
  • Organization: The Open University, Milton Keynes, UK
  • References: <etlqcn$rap$1@smc.vnet.net><etnif8$dl7$1@smc.vnet.net> <etof1d$i2v$1@smc.vnet.net>

bhargavi wrote:
> hi, tx alot for ur reply.
> i copied input from mathematica5.2, n pasting here.
> \!\(CompleteIntegral[D[u[x, y], x]*1.5*\((
>     1 - 4\ y\^2)\) == \ Br\ 144\ y\^2\  + D[u[x, y], y]^2, u[x, y],
> {x, y}]\)
[snip]

The function CompleteIntegral does not reside in Mathematica kernel; 
therefore, you must load the package DSolveIntegrals before you can use 
CompleteIntegral. For instance

In[1]:=
Remove[CompleteIntegral]
<< "Calculus`DSolveIntegrals`"
CompleteIntegral[D[u[x, y], x]*1.5*(1 - 4*y^2) ==
    Br*144*y^2 + D[u[x, y], y]^2, u[x, y], {x, y}]

Out[3]=
{{u[x, y] ->

                                2
     x B[1] - 6. y Sqrt[-1. Br y  + 0.0104167 B[1.] -

                    2
         0.0416667 y  B[1.]] + B[2] -

      ((0. + 0.0625 I) B[1.]

         Log[(0. - 2. I) y

            Sqrt[1. Br + 0.0416667 B[1.]] +

                           2
           2. Sqrt[-1. Br y  + 0.0104167 B[1.] -

                         2
              0.0416667 y  B[1.]]]) /

       Sqrt[1. Br + 0.0416667 B[1.]]},

   {u[x, y] ->

                                2
     x B[1] + 6. y Sqrt[-1. Br y  + 0.0104167 B[1.] -

                    2
         0.0416667 y  B[1.]] + B[2] +

      ((0. + 0.0625 I) B[1.]

         Log[(0. - 2. I) y

            Sqrt[1. Br + 0.0416667 B[1.]] +

                           2
           2. Sqrt[-1. Br y  + 0.0104167 B[1.] -

                         2
              0.0416667 y  B[1.]]]) /

       Sqrt[1. Br + 0.0416667 B[1.]]}}

Regards,
Jean-Marc


  • Prev by Date: Re: Using legend with FilledPlot
  • Next by Date: Re: how to find complete integral of pde
  • Previous by thread: Re: how to find complete integral of pde
  • Next by thread: Re: how to find complete integral of pde