Re: how to find complete integral of pde
- To: mathgroup at smc.vnet.net
- Subject: [mg74436] Re: how to find complete integral of pde
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Wed, 21 Mar 2007 02:51:15 -0500 (EST)
- Organization: The Open University, Milton Keynes, UK
- References: <etlqcn$rap$1@smc.vnet.net><etnif8$dl7$1@smc.vnet.net> <etof1d$i2v$1@smc.vnet.net>
bhargavi wrote: > hi, tx alot for ur reply. > i copied input from mathematica5.2, n pasting here. > \!\(CompleteIntegral[D[u[x, y], x]*1.5*\(( > 1 - 4\ y\^2)\) == \ Br\ 144\ y\^2\ + D[u[x, y], y]^2, u[x, y], > {x, y}]\) [snip] The function CompleteIntegral does not reside in Mathematica kernel; therefore, you must load the package DSolveIntegrals before you can use CompleteIntegral. For instance In[1]:= Remove[CompleteIntegral] << "Calculus`DSolveIntegrals`" CompleteIntegral[D[u[x, y], x]*1.5*(1 - 4*y^2) == Br*144*y^2 + D[u[x, y], y]^2, u[x, y], {x, y}] Out[3]= {{u[x, y] -> 2 x B[1] - 6. y Sqrt[-1. Br y + 0.0104167 B[1.] - 2 0.0416667 y B[1.]] + B[2] - ((0. + 0.0625 I) B[1.] Log[(0. - 2. I) y Sqrt[1. Br + 0.0416667 B[1.]] + 2 2. Sqrt[-1. Br y + 0.0104167 B[1.] - 2 0.0416667 y B[1.]]]) / Sqrt[1. Br + 0.0416667 B[1.]]}, {u[x, y] -> 2 x B[1] + 6. y Sqrt[-1. Br y + 0.0104167 B[1.] - 2 0.0416667 y B[1.]] + B[2] + ((0. + 0.0625 I) B[1.] Log[(0. - 2. I) y Sqrt[1. Br + 0.0416667 B[1.]] + 2 2. Sqrt[-1. Br y + 0.0104167 B[1.] - 2 0.0416667 y B[1.]]]) / Sqrt[1. Br + 0.0416667 B[1.]]}} Regards, Jean-Marc