Re: Struve functions
- To: mathgroup at smc.vnet.net
- Subject: [mg75715] Re: Struve functions
- From: dimitris <dimmechan at yahoo.com>
- Date: Wed, 9 May 2007 04:28:09 -0400 (EDT)
- References: <f1phmv$il0$1@smc.vnet.net>
Thanks a lot! Dimitris =CF/=C7 Bhuvanesh =DD=E3=F1=E1=F8=E5: > 5.2 did use convolution to get the result (by shifting the limits and com= puting Integrate[StruveH[n, t*x], {x,0,1}]). In 6.0, we get: > > In[1]:= Integrate[{StruveH[n, x], StruveL[n, x]}, x] //InputForm > > Out[1]//InputForm= > {2^(-2 - n)*x^(2 + n)*Gamma[1 + n/2]*HypergeometricPFQRegularized[{1, 1 += n/2}, {3/2 + n, 3/2, 2 + n/2}, > -x^2/4], 2^(-2 - n)*x^(2 + n)*Gamma[1 + n/2]*HypergeometricPFQRegulari= zed[{1, 1 + n/2}, > {3/2 + n, 3/2, 2 + n/2}, x^2/4]} > > In[2]:= D[%, x] - {StruveH[n, x], StruveL[n, x]} //FullSimplify > > Out[2]= {0, 0} > > Bhuvanesh, > Wolfram Research