Re: elliptic integral (reloaded!)
- To: mathgroup at smc.vnet.net
- Subject: [mg75933] Re: elliptic integral (reloaded!)
- From: dimitris <dimmechan at yahoo.com>
- Date: Sun, 13 May 2007 05:57:41 -0400 (EDT)
- References: <f23ome$n1h$1@smc.vnet.net>
If I was not clear let be a little more specific! I mean o//ReleaseHold produce a result in version 4 which having been checked numerically agrees with the relevant numerical estimation (by NIntegrate). On the other hand o//ReleaseHold returns the integral unevaluated in version 5.2. David Cantrell proposed the following workaround in version 5.2. In[2635]:= Integrate[(x - 1)/Sqrt[(1 - x)*(x - 2)*(x^2 - 2*x + 3)], {x, 1, 3/2}] + Integrate[Sqrt[(1 - x)/((x - 2)*(x^2 - 2*x + 3))], {x, 3/2, 2}]//InputForm Out[2635]//InputForm= (8*Sqrt[4 - I*Sqrt[2]]*EllipticF[ArcSin[Sqrt[5*I + Sqrt[2]]/2^(3/4)], (2*Sqrt[2])/(2*I + Sqrt[2])] - (7*I)*Sqrt[8 - (2*I)*Sqrt[2]]*EllipticF[ArcSin[Sqrt[5*I + Sqrt[2]]/ 2^(3/4)], (2*Sqrt[2])/(2*I + Sqrt[2])] + (12*I)*Sqrt[4 + I*Sqrt[2]]*EllipticF[I*(Log[2] - Log[Sqrt[2 - (2*I)*Sqrt[2]] + I*2^(1/4)*Sqrt[2*I + Sqrt[2]]]), (2*Sqrt[2])/(2*I + Sqrt[2])] - 3*Sqrt[8 + (2*I)*Sqrt[2]]* EllipticF[I*(Log[2] - Log[Sqrt[2 - (2*I)*Sqrt[2]] + I*2^(1/4)*Sqrt[2*I + Sqrt[2]]]), (2*Sqrt[2])/(2*I + Sqrt[2])] + 9*Sqrt[2*(-8 + (7*I)*Sqrt[2])]*EllipticPi[(2*Sqrt[2])/(-I + Sqrt[2]), ArcSin[Sqrt[5*I + Sqrt[2]]/2^(3/4)], (2*Sqrt[2])/(2*I + Sqrt[2])] - 9*Sqrt[2*(-8 + (7*I)*Sqrt[2])]*EllipticPi[(2*Sqrt[2])/(-I + Sqrt[2]), I*(Log[2] - Log[Sqrt[2 - (2*I)*Sqrt[2]] + I*2^(1/4)*Sqrt[2*I + Sqrt[2]]]), (2*Sqrt[2])/(2*I + Sqrt[2])])/ (3*Sqrt[-1 + I/Sqrt[2]]*Sqrt[-8 + (7*I)*Sqrt[2]]*(-I + Sqrt[2])) + EllipticPi[1 - I/Sqrt[2], ArcSin[Root[2 + 4*#1^2 + 3*#1^4 & , 3, 0]], (1 - (2*I)*Sqrt[2])/3]*Root[8 + 8*#1^2 + 3*#1^4 & , 4, 0] In[2636]:= Chop[N[%,30]] Out[2636]= 0=2E975261536923865518804845371749 which it looks quite mysterious to me! (3/2???) Dimitris =CF/=C7 dimitris =DD=E3=F1=E1=F8=E5: > I guess saying many things prevent forumists from answering?! > > Anyway... > > In[9]:= > o = HoldForm[Integrate[Sqrt[(1 - x)/((x - 2)*(x^2 - 2*x + 3))], {x, 1, > 2}]] > > Version 4. succeeds in getting a closed form result. > Version 5.2 returns the integral unevalueated. > > I just want to know what version 6 does! > > Thanks a lot! > > Dimitris