MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Integrate[s^s(1-s)^(1-s)Sin[Pi s],{s,0,1}]


On May 15, 10:47 am, janos <janostothmeis... at gmail.com> wrote:
> Any idea to calculate this integral (symbolically) or reformulate it
> using some special functions?
>
> Thanks, Janos


I don't know if Mathematica can calculate it simbolically, but if you
calculate it numerically with enough precision, you can use the
Plouffe's Inverter ( http://pi.lacim.uqam.ca/eng/ ) to check that it
is Pi*E/24 (or at least, very very close to)

NIntegrate[s^s(1-s)^(1-s)Sin[Pi s],{s,0,1}, WorkingPrecision->40]
0.355822259278065294394314619564

N[Pi*E/24,30]
0.355822259278065294394314619564


Regards.



  • Prev by Date: Re: 2D Convolution
  • Next by Date: Re: 2D Convolution
  • Previous by thread: Re: Integrate[s^s(1-s)^(1-s)Sin[Pi s],{s,0,1}]
  • Next by thread: Re: Integrate[s^s(1-s)^(1-s)Sin[Pi s],{s,0,1}]