Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2007
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Pisot Numbers

  • To: mathgroup at smc.vnet.net
  • Subject: [mg76412] Re: [mg76335] Pisot Numbers
  • From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
  • Date: Mon, 21 May 2007 06:11:12 -0400 (EDT)
  • References: <200705200621.CAA05765@smc.vnet.net> <B342ED46-0742-434D-9B26-60F80187246C@mimuw.edu.pl>

On 20 May 2007, at 18:03, Andrzej Kozlowski wrote:

>
> On 20 May 2007, at 15:21, dimitris wrote:
>
>> In view of a recent Message
>>
>> In[389]:=
>> o1 = (E^(Sqrt[163]*Pi) - 744)^(1/3);
>> o2 = 640320;
>>
>> In[391]:=
>> N[(E^(Sqrt[163]*Pi) - 744)^(1/3) - 640320, 100]
>>
>> Out[391]=
>> -6.096826476805298734971644609739663360781003906385187541696114645884 
>> 6138003732168221294047257351725890381494173`100.*^-25
>>
>> Also
>>
>> In[394]:=
>> Element[o1, Integers]
>>
>> Out[394]=
>> False
>>
>> Take now an example from Trot's Gidebooks.
>>
>> In[397]:=
>> o3 = ((2/(27 + 3*Sqrt[69]))^(1/3) + (1/3)*((1/2)*(27 +
>> 3*Sqrt[69]))^(1/3))^27369;
>>
>> o4 =
>> 248872083860566242801488633985778816168566582615463984666186327177996 
>> 8897\
>> 941302876969944745816129045615885143011927101923791713997993058914014 
>> 883941331\
>> 496588665859636179886756365479484076315048561102041450220571014497428 
>> 072837453\
>> 490447134892293461819188050968748780135755569233537426736962247783202 
>> 459889540\
>> 213301883484666470466149889402655143734621040204402439497074243583844 
>> 435180857\
>> 228403580970629296798899333826598686243987854716724374760335810100582 
>> 327703252\
>> 886711404982379820790899904312876809580414490656116484737937974600066 
>> 542685289\
>> 106532890742345783983687027507936729079442473934078360160815378816949 
>> 415366223\
>> 547953896457883387197030107324924232558604649327195920807344164169408 
>> 849950012\
>> 979654395273385341095562256314722477722302818244400186545582913013684 
>> 116069229\
>> 948450508385560502376379491505913877574694543067098950233734987525958 
>> 694493166\
>> 065786146114295805170616134580156268741967789244572258673205513485511 
>> 448982113\
>> 074128616447024942770432196754923847050903086833932583983456210775092 
>> 840495926\
>> 289398412204946622896060874294857076651762085967637510807753767056601 
>> 346018771\
>> 027068086233850837047631634161338416471812349025685230145549063307448 
>> 984654469\
>> 500345708114334002372857024261410333404070216793731889901563587912181 
>> 986503488\
>> 932240588333472792264516219643268144193209629883467045872736189979709 
>> 366330108\
>> 944683622923025480388609270892579905058376065654372722673382421099596 
>> 652032752\
>> 423655970286505879088423573116299843248723992370681856106228825253081 
>> 951335763\
>> 606805097314767756009989894248180226689216688712554660307978677642033 
>> 917433524\
>> 177703612346235567428057168862868263715487449187865230223959037178478 
>> 650607885\
>> 929852524030200605375426361295649137497579902728693786036767203892699 
>> 418847034\
>> 973900792486513050707875184722293046768355234117849762278847536427384 
>> 240325375\
>> 931710068928003083282083508258941657571106418546338991654633520007125 
>> 094003937\
>> 060577513244349419124583678640310438044741715469307650984762987113625 
>> 655095113\
>> 341410659514797573216487308588020792972361604798011836953448415069774 
>> 170327604\
>> 176428382899037366367969875803830362244613565592323446457417387836546 
>> 707590791\
>> 148857442335097804365308142758237796222541372347526347511124157083242 
>> 577253654\
>> 864546653468558226069365021560451385770280243507694206247762400972408 
>> 775051143\
>> 528825344094380032368218145009068738988932699440006161647412432021399 
>> 929998924\
>> 197063449517037778261055705878691043258271291941546764790768702904202 
>> 815388755\
>> 953467402952252786624210537218217362187375224335225100774863989100606 
>> 085031055\
>> 987180950433574684009505526256479756716140052888061921437953507269705 
>> 531834507\
>> 752244853777872848075149669430514248120843405866305425664958833381695 
>> 289311873\
>> 275612903811562531683996339721232710796969624597692084825522259134899 
>> 944567445\
>> 316144180191492624723899611977533345482296723851296876182987982763612 
>> 903081830\
>> 406428255761789360866674785134042824865250319983289744838888137526494 
>> 195021927\
>> 158720998042457987098509876243983825524393130319382015891243101298654 
>> 993872084\
>> 034846505853704619531981994143584471102830065857739428507878016585984 
>> 828808526\
>> 342887038330953482823346606566055339838200632031259942468414620516606 
>> 902878898\
>> 295905037327168661392320861496592384492793915926275510204303513646878 
>> 274710211\
>> 927798593011178010654392195694992994203684249930039904616401126153259 
>> 826319808\
>> 971152916585811064172283699654029309129460623214205826005262694547534 
>> 088;
>>
>> o3 is not an integer, but it nearly is.
>>
>> In[401]:=
>> N[(2^(1/3)/(27 + 3*Sqrt[69])^(1/3) + (27 + 3*Sqrt[69])^(1/3)/
>> (3*2^(1/3)))^27369, 5030] -
>> 248872083860566242801488633985778816168\
>> 566582615463984666186327177996889794130287696994474581612904561588514 
>> 30119271019237917139979930589140148839413314965886658596361\
>> 798867563654794840763150485611020414502205710144974280728374534904471 
>> 34892293461819188050968748780135755569233537426736962247783\
>> 202459889540213301883484666470466149889402655143734621040204402439497 
>> 07424358384443518085722840358097062929679889933382659868624\
>> 398785471672437476033581010058232770325288671140498237982079089990431 
>> 28768095804144906561164847379379746000665426852891065328907\
>> 423457839836870275079367290794424739340783601608153788169494153662235 
>> 47953896457883387197030107324924232558604649327195920807344\
>> 164169408849950012979654395273385341095562256314722477722302818244400 
>> 18654558291301368411606922994845050838556050237637949150591\
>> 387757469454306709895023373498752595869449316606578614611429580517061 
>> 61345801562687419677892445722586732055134855114489821130741\
>> 286164470249427704321967549238470509030868339325839834562107750928404 
>> 95926289398412204946622896060874294857076651762085967637510\
>> 807753767056601346018771027068086233850837047631634161338416471812349 
>> 02568523014554906330744898465446950034570811433400237285702\
>> 426141033340407021679373188990156358791218198650348893224058833347279 
>> 22645162196432681441932096298834670458727361899797093663301\
>> 089446836229230254803886092708925799050583760656543727226733824210995 
>> 96652032752423655970286505879088423573116299843248723992370\
>> 681856106228825253081951335763606805097314767756009989894248180226689 
>> 21668871255466030797867764203391743352417770361234623556742\
>> 805716886286826371548744918786523022395903717847865060788592985252403 
>> 02006053754263612956491374975799027286937860367672038926994\
>> 188470349739007924865130507078751847222930467683552341178497622788475 
>> 36427384240325375931710068928003083282083508258941657571106\
>> 418546338991654633520007125094003937060577513244349419124583678640310 
>> 43804474171546930765098476298711362565509511334141065951479\
>> 757321648730858802079297236160479801183695344841506977417032760417642 
>> 83828990373663679698758038303622446135655923234464574173878\
>> 365467075907911488574423350978043653081427582377962225413723475263475 
>> 11124157083242577253654864546653468558226069365021560451385\
>> 770280243507694206247762400972408775051143528825344094380032368218145 
>> 00906873898893269944000616164741243202139992999892419706344\
>> 951703777826105570587869104325827129194154676479076870290420281538875 
>> 59534674029522527866242105372182173621873752243352251007748\
>> 639891006060850310559871809504335746840095055262564797567161400528880 
>> 61921437953507269705531834507752244853777872848075149669430\
>> 514248120843405866305425664958833381695289311873275612903811562531683 
>> 99633972123271079696962459769208482552225913489994456744531\
>> 614418019149262472389961197753334548229672385129687618298798276361290 
>> 30818304064282557617893608666747851340428248652503199832897\
>> 448388881375264941950219271587209980424579870985098762439838255243931 
>> 30319382015891243101298654993872084034846505853704619531981\
>> 994143584471102830065857739428507878016585984828808526342887038330953 
>> 48282334660656605533983820063203125994246841462051660690287\
>> 889829590503732716866139232086149659238449279391592627551020430351364 
>> 68782747102119277985930111780106543921956949929942036842499\
>> 300399046164011261532598263198089711529165858110641722836996540293091 
>> 29460623214205826005262694547534088
>>
>> Out[401]=
>> -0.999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 999999999999999999999999999999999999999999999999999999999999999999999 
>> 999999999\
>> 99999999999999999999999999999999999881537021130425452
>>
>>
>> However Element[o3,Integers] return unevaluated.
>>
>> In[404]:=
>> Element[o3, Integers]
>>
>> Out[404]=
>> ((2/(27 + 3*Sqrt[69]))^(1/3) + (1/3)*((1/2)*(27 +
>> 3*Sqrt[69]))^(1/3))^27369   Integers
>>
>> Why?
>> How we can symbolically show that o3 is not an integer?
>>
>> Dimitris
>>
>>
>
>
> But it is extremly easy!
>
> o3 = ((2/(27 + 3*Sqrt[69]))^(1/3) + (1/
>         3)*((1/2)*(27 + 3*Sqrt[69]))^(1/3))^27369;
> FullSimplify[Element[o3, Integers]]
> False
>
> ??
>
> Andrzej Kozlowski


I should add that using FullSimplify does not always mean that we are  
proving something "symbolically", because increasingly in computer  
algebra algebraic functions rely on 'symbolically verified' numerical  
methods, that is, numerical methods that return answers that are as  
valid as those returned by purely symbolic methods. Such methods,  
when they exist, tend to be a lot faster than purely symbolic ones.  
So in this case it is also possible that this kind of technique is  
used by FullSimplify. I can only guess of course...

Andrzej Kozlowski


  • Prev by Date: Re: Drawing a bounded smooth region with Mathematica
  • Next by Date: Re: Pisot Numbers
  • Previous by thread: Pisot Numbers
  • Next by thread: Re: Pisot Numbers