Re: Pisot Numbers
- To: mathgroup at smc.vnet.net
- Subject: [mg76411] Re: [mg76335] Pisot Numbers
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Mon, 21 May 2007 06:10:41 -0400 (EDT)
- References: <200705200621.CAA05765@smc.vnet.net>
On 20 May 2007, at 15:21, dimitris wrote: > In view of a recent Message > > In[389]:= > o1 = (E^(Sqrt[163]*Pi) - 744)^(1/3); > o2 = 640320; > > In[391]:= > N[(E^(Sqrt[163]*Pi) - 744)^(1/3) - 640320, 100] > > Out[391]= > -6.0968264768052987349716446097396633607810039063851875416961146458846 > 138003732168221294047257351725890381494173`100.*^-25 > > Also > > In[394]:= > Element[o1, Integers] > > Out[394]= > False > > Take now an example from Trot's Gidebooks. > > In[397]:= > o3 = ((2/(27 + 3*Sqrt[69]))^(1/3) + (1/3)*((1/2)*(27 + > 3*Sqrt[69]))^(1/3))^27369; > > o4 = > 2488720838605662428014886339857788161685665826154639846661863271779968 > 897\ > 9413028769699447458161290456158851430119271019237917139979930589140148 > 83941331\ > 4965886658596361798867563654794840763150485611020414502205710144974280 > 72837453\ > 4904471348922934618191880509687487801357555692335374267369622477832024 > 59889540\ > 2133018834846664704661498894026551437346210402044024394970742435838444 > 35180857\ > 2284035809706292967988993338265986862439878547167243747603358101005823 > 27703252\ > 8867114049823798207908999043128768095804144906561164847379379746000665 > 42685289\ > 1065328907423457839836870275079367290794424739340783601608153788169494 > 15366223\ > 5479538964578833871970301073249242325586046493271959208073441641694088 > 49950012\ > 9796543952733853410955622563147224777223028182444001865455829130136841 > 16069229\ > 9484505083855605023763794915059138775746945430670989502337349875259586 > 94493166\ > 0657861461142958051706161345801562687419677892445722586732055134855114 > 48982113\ > 0741286164470249427704321967549238470509030868339325839834562107750928 > 40495926\ > 2893984122049466228960608742948570766517620859676375108077537670566013 > 46018771\ > 0270680862338508370476316341613384164718123490256852301455490633074489 > 84654469\ > 5003457081143340023728570242614103334040702167937318899015635879121819 > 86503488\ > 9322405883334727922645162196432681441932096298834670458727361899797093 > 66330108\ > 9446836229230254803886092708925799050583760656543727226733824210995966 > 52032752\ > 4236559702865058790884235731162998432487239923706818561062288252530819 > 51335763\ > 6068050973147677560099898942481802266892166887125546603079786776420339 > 17433524\ > 1777036123462355674280571688628682637154874491878652302239590371784786 > 50607885\ > 9298525240302006053754263612956491374975799027286937860367672038926994 > 18847034\ > 9739007924865130507078751847222930467683552341178497622788475364273842 > 40325375\ > 9317100689280030832820835082589416575711064185463389916546335200071250 > 94003937\ > 0605775132443494191245836786403104380447417154693076509847629871136256 > 55095113\ > 3414106595147975732164873085880207929723616047980118369534484150697741 > 70327604\ > 1764283828990373663679698758038303622446135655923234464574173878365467 > 07590791\ > 1488574423350978043653081427582377962225413723475263475111241570832425 > 77253654\ > 8645466534685582260693650215604513857702802435076942062477624009724087 > 75051143\ > 5288253440943800323682181450090687389889326994400061616474124320213999 > 29998924\ > 1970634495170377782610557058786910432582712919415467647907687029042028 > 15388755\ > 9534674029522527866242105372182173621873752243352251007748639891006060 > 85031055\ > 9871809504335746840095055262564797567161400528880619214379535072697055 > 31834507\ > 7522448537778728480751496694305142481208434058663054256649588333816952 > 89311873\ > 2756129038115625316839963397212327107969696245976920848255222591348999 > 44567445\ > 3161441801914926247238996119775333454822967238512968761829879827636129 > 03081830\ > 4064282557617893608666747851340428248652503199832897448388881375264941 > 95021927\ > 1587209980424579870985098762439838255243931303193820158912431012986549 > 93872084\ > 0348465058537046195319819941435844711028300658577394285078780165859848 > 28808526\ > 3428870383309534828233466065660553398382006320312599424684146205166069 > 02878898\ > 2959050373271686613923208614965923844927939159262755102043035136468782 > 74710211\ > 9277985930111780106543921956949929942036842499300399046164011261532598 > 26319808\ > 9711529165858110641722836996540293091294606232142058260052626945475340 > 88; > > o3 is not an integer, but it nearly is. > > In[401]:= > N[(2^(1/3)/(27 + 3*Sqrt[69])^(1/3) + (27 + 3*Sqrt[69])^(1/3)/ > (3*2^(1/3)))^27369, 5030] - > 248872083860566242801488633985778816168\ > 5665826154639846661863271779968897941302876969944745816129045615885143 > 0119271019237917139979930589140148839413314965886658596361\ > 7988675636547948407631504856110204145022057101449742807283745349044713 > 4892293461819188050968748780135755569233537426736962247783\ > 2024598895402133018834846664704661498894026551437346210402044024394970 > 7424358384443518085722840358097062929679889933382659868624\ > 3987854716724374760335810100582327703252886711404982379820790899904312 > 8768095804144906561164847379379746000665426852891065328907\ > 4234578398368702750793672907944247393407836016081537881694941536622354 > 7953896457883387197030107324924232558604649327195920807344\ > 1641694088499500129796543952733853410955622563147224777223028182444001 > 8654558291301368411606922994845050838556050237637949150591\ > 3877574694543067098950233734987525958694493166065786146114295805170616 > 1345801562687419677892445722586732055134855114489821130741\ > 2861644702494277043219675492384705090308683393258398345621077509284049 > 5926289398412204946622896060874294857076651762085967637510\ > 8077537670566013460187710270680862338508370476316341613384164718123490 > 2568523014554906330744898465446950034570811433400237285702\ > 4261410333404070216793731889901563587912181986503488932240588333472792 > 2645162196432681441932096298834670458727361899797093663301\ > 0894468362292302548038860927089257990505837606565437272267338242109959 > 6652032752423655970286505879088423573116299843248723992370\ > 6818561062288252530819513357636068050973147677560099898942481802266892 > 1668871255466030797867764203391743352417770361234623556742\ > 8057168862868263715487449187865230223959037178478650607885929852524030 > 2006053754263612956491374975799027286937860367672038926994\ > 1884703497390079248651305070787518472229304676835523411784976227884753 > 6427384240325375931710068928003083282083508258941657571106\ > 4185463389916546335200071250940039370605775132443494191245836786403104 > 3804474171546930765098476298711362565509511334141065951479\ > 7573216487308588020792972361604798011836953448415069774170327604176428 > 3828990373663679698758038303622446135655923234464574173878\ > 3654670759079114885744233509780436530814275823779622254137234752634751 > 1124157083242577253654864546653468558226069365021560451385\ > 7702802435076942062477624009724087750511435288253440943800323682181450 > 0906873898893269944000616164741243202139992999892419706344\ > 9517037778261055705878691043258271291941546764790768702904202815388755 > 9534674029522527866242105372182173621873752243352251007748\ > 6398910060608503105598718095043357468400950552625647975671614005288806 > 1921437953507269705531834507752244853777872848075149669430\ > 5142481208434058663054256649588333816952893118732756129038115625316839 > 9633972123271079696962459769208482552225913489994456744531\ > 6144180191492624723899611977533345482296723851296876182987982763612903 > 0818304064282557617893608666747851340428248652503199832897\ > 4483888813752649419502192715872099804245798709850987624398382552439313 > 0319382015891243101298654993872084034846505853704619531981\ > 9941435844711028300658577394285078780165859848288085263428870383309534 > 8282334660656605533983820063203125994246841462051660690287\ > 8898295905037327168661392320861496592384492793915926275510204303513646 > 8782747102119277985930111780106543921956949929942036842499\ > 3003990461640112615325982631980897115291658581106417228369965402930912 > 9460623214205826005262694547534088 > > Out[401]= > -0.9999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 9999999999999999999999999999999999999999999999999999999999999999999999 > 99999999\ > 99999999999999999999999999999999999881537021130425452 > > > However Element[o3,Integers] return unevaluated. > > In[404]:= > Element[o3, Integers] > > Out[404]= > ((2/(27 + 3*Sqrt[69]))^(1/3) + (1/3)*((1/2)*(27 + > 3*Sqrt[69]))^(1/3))^27369 Integers > > Why? > How we can symbolically show that o3 is not an integer? > > Dimitris > > But it is extremly easy! o3 = ((2/(27 + 3*Sqrt[69]))^(1/3) + (1/ 3)*((1/2)*(27 + 3*Sqrt[69]))^(1/3))^27369; FullSimplify[Element[o3, Integers]] False ?? Andrzej Kozlowski
- References:
- Pisot Numbers
- From: dimitris <dimmechan@yahoo.com>
- Pisot Numbers