Re: drawing
- To: mathgroup at smc.vnet.net
- Subject: [mg76732] Re: drawing
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Sat, 26 May 2007 04:42:42 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <f36gu8$9tn$1@smc.vnet.net>
dimitris wrote: > The following produce a bounded region like those encountered > in any elementary vector analysis book. > > In[41]:= > Clear["Global`*"] > > In[42]:= > << "Graphics`Arrow`" > > We want to take a circle and add an arbitrary modulation to the > radius > to obtain an irregular shape. However, we need a smooth join at o=0 > and o=2Pi. So we need a partition function. I am going to make a > function that is a over most of the domain 0 to 2 , but smoothly > transistions to zero at the end points and has zero slope at the end > points. The following was just used to calculate arguments for the > function. > > In[43]:= > a*o + b /. o -> 2*Pi > Out[43]= > b + 2*a*Pi > > In[45]:= > a*o + b /. o -> 2*Pi - d > Out[45]= > b + a*(-d + 2*Pi) > > In[46]:= > Solve[{b + 2*a*Pi == -(Pi/2), b + a*(-d + 2*Pi) == Pi/2}, {a, b}] > Out[46]= > {{a -> -(Pi/d), b -> -((d*Pi - 4*Pi^2)/(2*d))}} > > In[49]:= > 1/2 + (1/2)*Sin[(-o)*(Pi/d) - (d*Pi - 4*Pi^2)/(2*d)] > FullSimplify[%] > > Out[49]= > 1/2 - (1/2)*Sin[(o*Pi)/d + (d*Pi - 4*Pi^2)/(2*d)] > Out[50]= > Sin[((o - 2*Pi)*Pi)/(2*d)]^2 > > So this gives us a partition function. d gives the width of the > transistion region at each end of the o domain. > > In[51]:= > partitionfunction[d_][o_] := Piecewise[{{Sin[(Pi*o)/(2*d)]^2, > Inequality[0, LessEqual, o, Less, d]}, > {1, Inequality[d, LessEqual, o, Less, 2*Pi - d]}, {Sin[(Pi*(2*Pi > - > o))/(2*d)]^2, 2*Pi - d <= o <= 2*Pi}}] > > Let's use a piece of a Bessel function to modulate the radius. > > In[52]:= > Plot[BesselJ[5, x], {x, 5, 18}, Frame -> True]; > > In[53]:= > Solve[{(a*o + b /. o -> 0) == 5, (a*o + b /. o -> 2*Pi) == 18}] > Out[53]= > {{a -> 13/(2*Pi), b -> 5}} > > In[54]:= > radius[d_][o_] := 1 + 1.5*partitionfunction[d][o]*BesselJ[5, (13/ > (2*Pi))*o + 5] > > In[55]:= > Plot[radius[1][o], {o, 0, 2*Pi}, Frame -> True, PlotRange -> All, > Axes > -> False]; > > Now we can parametrize the curve. > > In[58]:= > curve[d_][o_] := radius[d][o]*{Cos[o], Sin[o]} > > For d=1 and o=45=B0 we can calculate the tangent line and normal > line. > > In[59]:= > tangent[t_] = N[curve[1][45*Degree] + t*Derivative[1][curve[1]] > [45*Degree]] > Out[59]= > {1.057382730502271 - 0.7335911589691905*t, 1.057382730502271 + > 1=2E3811743020353515*t} > > In[61]:= > normal[t_] = N[curve[1][45*Degree] + t*Reverse[Derivative[1] > [curve[1]] > [45*Degree]]*{1, -1}] > Out[61]= > {1.057382730502271 + 1.3811743020353515*t, 1.057382730502271 + > 0=2E7335911589691905*t} > > In[83]:= > n = {1.127382730502271, 1.037382730502271}; > > Finnally > > In[81]:= > Block[{$DisplayFunction = Identity}, g = ParametricPlot[curve[1][o1], > {o1, 0, 2*Pi}, Axes -> False, PlotPoints -> 50, > PlotStyle -> Thickness[0.007]]; g1 = g /. Line[x_] -> > {GrayLevel[0.8], Polygon[x]}; > g2 = ParametricPlot[tangent[t], {t, -0.2, 0.2}, PlotStyle -> > Thickness[0.006], PlotPoints -> 50]; > g3 = Graphics[{Thickness[0.007], Arrow[normal[0], normal[0.3], > HeadLength -> 0.06, HeadCenter -> 0.7]}]; > cir = Graphics[{Circle[normal[0], 0.1, {3.3*(Pi/2), 2.15*Pi}]}]; > po > = Graphics[{PointSize[0.01], Point[n]}]; > tex1 = Graphics[Text["V", {0.0532359, -0.0138103}]]; tex2 = > Graphics[Text["S", {0.470751, -1.08655}]]; > tex3 = Graphics[Text[StyleForm["n", FontSize -> 17, FontFamily -> > "Times", FontColor -> Black, > FontWeight -> "Bold"], {1.7, 1.2}]]; ] > > Show[g, g1, g2, g3, tex1, tex2, tex3, cir, po, AspectRatio -> > Automatic, > TextStyle -> {FontSize -> 17, FontFamily -> "Times", FontWeight -> > "Bold"}]; > > Murray Eisenberg has tried this code in Mathematica 6 and after made > the proper > modifications (Arrow package is obsolete in the new version for > example) he got > a very unpleasant graph. > > See here > > http://smc.vnet.net/mgattach/curve.png > > Any ideas what is going one? > > I would very appreciate if someone could modify the code to work in > version 6 and put the resulting > graphic in some link page. The antialiasing makes the quality of the > graphics objects by far more > superior and "cleaner" in version 6 but unfortunately I don't have it > yet! > > Thanks > Dimitris Hi Dimitris, I believe that the following is very close to what you expect. I have fixed the code for the arrow using the built-in function Arrow and Arrowheads (note that the spelling is correct: the second word, head, is not capitalized. I would have expected ArrowHeads). Note that by changing the order of the graphs in the last Show command, in version 6.0, (Show[g3, g, g1, g2, ...] rather than Show[g, g1, g2, g3, ...]) you get the normal vector correctly displayed. You do not need to do that in version 5.2. You can see the resulting plot at http://homepages.nyu.edu/~jmg336/Dimitris%20Graphics.png (I have sent to you the notebook and a png picture.) Regards, Jean-Marc P.S. Here is the code for version 6.0. Clear["Global`*"] a*o + b /. o -> 2*Pi a*o + b /. o -> 2*Pi - d Solve[ { b + 2*a*Pi == - ( Pi/2), b + a* ( -d + 2*Pi) == Pi/2}, { a, b}] 1/2 + ( 1/2)* Sin[ ( -o)* ( Pi/d) - ( d*Pi - 4* Pi^2)/ ( 2*d)] FullSimplify[%] partitionfunction[d_][o_] := Piecewise[ { { Sin[ ( Pi*o)/ ( 2*d)]^2, Inequality[ 0, LessEqual, o, Less, d]}, { 1, Inequality[ d, LessEqual, o, Less, 2*Pi - d]}, { Sin[ ( Pi* ( 2*Pi - o))/ ( 2*d)]^2, 2*Pi - d <= o <= 2*Pi}}] Plot[ BesselJ[ 5, x], { x, 5, 18}, Frame -> True] Solve[ { ( a*o + b /. o -> 0) == 5, ( a*o + b /. o -> 2*Pi) == 18}] radius[d_][o_] := 1 + 1.5* partitionfunction[d][o]* BesselJ[ 5, ( 13/ ( 2*Pi))*o + 5] Plot[ radius[1][o], { o, 0, 2*Pi}, Frame -> True, PlotRange -> All, Axes -> False] curve[d_][o_] := radius[d][o]* { Cos[o], Sin[o]} tangent[t_] = N[ curve[1][ 45*Degree] + t* Derivative[1][ curve[1]][ 45*Degree]] normal[t_] = N[ curve[1][ 45*Degree] + t* Reverse[ Derivative[1][ curve[1]][ 45*Degree]]* { 1, -1}] n = { 1.127382730502271, 1.037382730502271}; g = ParametricPlot[ curve[1][o1], { o1, 0, 2*Pi}, Axes -> False, PlotPoints -> 50, PlotStyle -> Thickness[0.007]]; g1 = g /. Line[x_] -> { GrayLevel[0.8], Polygon[x]}; g2 = ParametricPlot[ tangent[t], { t, -0.2, 0.2}, PlotStyle -> Thickness[0.004], PlotPoints -> 50]; g3 = Graphics[ { Thickness[0.007], Arrowheads[ { { 0.06, 1., Graphics[ Polygon[ { { 0, 0}, { -1, -1/3}, { -1/3, 0}, { -1, 1/3}}], ImageSize -> { 38., Automatic}]}}], Arrow[ { normal[0], normal[0.3]}]}]; cir = Graphics[ { Circle[ normal[0], 0.1, { 3.3* ( Pi/2), 2.15*Pi}]}]; po = Graphics[ { PointSize[0.01], Point[n]}]; tex1 = Graphics[ Text[ "V", { 0.0532359, -0.0138103}]]; tex2 = Graphics[ Text[ "S", { 0.470751, -1.08655}]]; tex3 = Graphics[ Text[ StyleForm[ "n", FontSize -> 17, FontFamily -> "Times", FontColor -> Black, FontWeight -> "Bold"], { 1.7, 1.2}]]; Show[ g3, g, g1, g2, tex1, tex2, tex3, cir, po, AspectRatio -> Automatic, TextStyle -> { FontSize -> 17, FontFamily -> "Times", FontWeight -> "Bold"}]
- Follow-Ups:
- Re: Re: drawing
- From: "Jean-Marc Gulliet" <jeanmarc.gulliet@gmail.com>
- Re: Re: drawing
- From: "Jean-Marc Gulliet" <jeanmarc.gulliet@gmail.com>
- Re: Re: drawing