Re: Integrate bug
- To: mathgroup at smc.vnet.net
- Subject: [mg76851] Re: Integrate bug
- From: dimitris <dimmechan at yahoo.com>
- Date: Mon, 28 May 2007 01:11:44 -0400 (EDT)
- References: <f38qnt$hsh$1@smc.vnet.net><f3bhoh$3gs$1@smc.vnet.net>
/ Jean-Marc Gulliet : > dimitris wrote: > > $VersionNumber > > 5.2 > > > > In[75]:= > > int1 = (1/(2*Pi*I))*Integrate[1/o, {o, 1, I, -1, -I, 1}] > > Out[75]= > > 1 > > > > In[76]:= > > int2 = (1/(2*Pi*I))*Integrate[1/o, {o, r, r*I, -r, (-r)*I, r}, > > Assumptions -> r > 0] > > Out[76]= > > 1 > > > > In[78]:= > > int3 = (1/(2*Pi*I))*Integrate[Exp[2/o], {o, 1, I, -1, -I, 1}] > > Out[78]= > > 2 > > > > In[82]:= > > int4 = (1/(2*Pi*I))*Integrate[Exp[2/o], {o, r, r*I, -r, (-r)*I, r}, > > Assumptions -> r > 0] > > Simplify[int4] > > > > Out[82]= > > -((I*((-E^(-2/r))*r - E^(2/r)*r + (E^(-2/r) - I*E^((2*I)/r))*r + > > (I*E^((2*I)/r) + E^(2/r))*r))/(2*Pi)) > > Out[83]= > > 0 > > > > inti (i=1,2,3) are correct (residue theorem) > > int4 is incorrect (it should be 2; residue theorem) > > > > 1)Any ideas for workarounds in version 5.2? > > 2)What does version 6 do? > > > > Thanks > > Dimitris > > Hi Dimitris, > > I have got {1, 1, 0, 0} with version 6.0. > > In[1]:= $VersionNumber > > Out[1]= 6. > > In[2]:= int1 = (1/(2*Pi*I))*Integrate[1/o, {o, 1, I, -1, -I, 1}] > > Out[2]= 1 > > In[3]:= int2 = (1/(2*Pi*I))* > Integrate[1/o, {o, r, r*I, -r, (-r)*I, r}, > Assumptions -> r > 0] > > Out[3]= 1 > > In[4]:= int3 = (1/(2*Pi*I))*Integrate[Exp[2/o], {o, 1, I, -1, -I, 1}] > FullSimplify[int3] > > Out[4]= -((1/(2*Pi))*(I*(I*E^(2*I) + 4*I*Pi - I*Cos[2] - > 2*ExpIntegralEi[2*I] + 2*ExpIntegralEi[2] + > 2*Gamma[0, -2] - > 2*Gamma[0, -2*I] + Sin[2]))) > > Out[5]= 0 > > In[6]:= int4 = (1/(2*Pi*I))* > Integrate[Exp[2/o], {o, r, r*I, -r, (-r)*I, r}, > Assumptions -> r > 0] > FullSimplify[int4, Assumptions -> r > 0] > > Out[6]= -((1/(2*Pi))*(I*(4*I*Pi - I*E^((2*I)/r)*r - E^(2/r)*r + > (I*E^((2*I)/r) + E^(2/r))*r + > 2*ExpIntegralEi[-((2*I)/r)] - > 2*ExpIntegralEi[(2*I)/r] - 2*Gamma[0, -((2*I)/r)] + > 2*Gamma[0, (2*I)/r]))) > > Out[7]= 0 > > Best regards, > Jean-Marc int1 and int2 returns 1 in both 5.2 and 6. Good! This is in agreement with residue thorem. int3 returns 0 in 6? We have discovered a bug in version 6, I think. The result should be 2;I hope I ,don't miss something! Version 5.2 gives 2. int4 give 0 in 6? So does 5.2. The result should be 2. Again I hope I don't miss something! Dimitris