Re: Integrate bug
- To: mathgroup at smc.vnet.net
- Subject: [mg76779] Re: Integrate bug
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Sun, 27 May 2007 04:56:13 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <f38qnt$hsh$1@smc.vnet.net>
dimitris wrote: > $VersionNumber > 5.2 > > In[75]:= > int1 = (1/(2*Pi*I))*Integrate[1/o, {o, 1, I, -1, -I, 1}] > Out[75]= > 1 > > In[76]:= > int2 = (1/(2*Pi*I))*Integrate[1/o, {o, r, r*I, -r, (-r)*I, r}, > Assumptions -> r > 0] > Out[76]= > 1 > > In[78]:= > int3 = (1/(2*Pi*I))*Integrate[Exp[2/o], {o, 1, I, -1, -I, 1}] > Out[78]= > 2 > > In[82]:= > int4 = (1/(2*Pi*I))*Integrate[Exp[2/o], {o, r, r*I, -r, (-r)*I, r}, > Assumptions -> r > 0] > Simplify[int4] > > Out[82]= > -((I*((-E^(-2/r))*r - E^(2/r)*r + (E^(-2/r) - I*E^((2*I)/r))*r + > (I*E^((2*I)/r) + E^(2/r))*r))/(2*Pi)) > Out[83]= > 0 > > inti (i=1,2,3) are correct (residue theorem) > int4 is incorrect (it should be 2; residue theorem) > > 1)Any ideas for workarounds in version 5.2? > 2)What does version 6 do? > > Thanks > Dimitris Hi Dimitris, I have got {1, 1, 0, 0} with version 6.0. In[1]:= $VersionNumber Out[1]= 6. In[2]:= int1 = (1/(2*Pi*I))*Integrate[1/o, {o, 1, I, -1, -I, 1}] Out[2]= 1 In[3]:= int2 = (1/(2*Pi*I))* Integrate[1/o, {o, r, r*I, -r, (-r)*I, r}, Assumptions -> r > 0] Out[3]= 1 In[4]:= int3 = (1/(2*Pi*I))*Integrate[Exp[2/o], {o, 1, I, -1, -I, 1}] FullSimplify[int3] Out[4]= -((1/(2*Pi))*(I*(I*E^(2*I) + 4*I*Pi - I*Cos[2] - 2*ExpIntegralEi[2*I] + 2*ExpIntegralEi[2] + 2*Gamma[0, -2] - 2*Gamma[0, -2*I] + Sin[2]))) Out[5]= 0 In[6]:= int4 = (1/(2*Pi*I))* Integrate[Exp[2/o], {o, r, r*I, -r, (-r)*I, r}, Assumptions -> r > 0] FullSimplify[int4, Assumptions -> r > 0] Out[6]= -((1/(2*Pi))*(I*(4*I*Pi - I*E^((2*I)/r)*r - E^(2/r)*r + (I*E^((2*I)/r) + E^(2/r))*r + 2*ExpIntegralEi[-((2*I)/r)] - 2*ExpIntegralEi[(2*I)/r] - 2*Gamma[0, -((2*I)/r)] + 2*Gamma[0, (2*I)/r]))) Out[7]= 0 Best regards, Jean-Marc