Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: What is the purpose of the Defer Command?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg81987] Re: What is the purpose of the Defer Command?
  • From: Vince Virgilio <blueschi at gmail.com>
  • Date: Mon, 8 Oct 2007 02:04:50 -0400 (EDT)
  • References: <fe4uhp$155$1@smc.vnet.net><200710060846.EAA25515@smc.vnet.net>

On Oct 7, 5:55 am, Andrzej Kozlowski <a... at mimuw.edu.pl> wrote:
> On 6 Oct 2007, at 17:46, Vince Virgilio wrote:
>
>
>
>
>
> > On Oct 5, 5:01 am, "David Park" <djmp... at comcast.net> wrote:
> >> I do not understand the utility of the new Defer statement in  
> >> Mathematica
> >> Version 6. Also, it seems to me to be similar to, but not as good  
> >> as, the
> >> HoldTemporary command introduced by Ted Ersek on MathSource a few  
> >> years ago.
>
> >> The help for Defer says: "Defer[expr] yields an object that  
> >> displays as the
> >> unevaluated form of expr, but which is evaluated if it is  
> >> explicitly given
> >> as Mathematica input." What does 'given as Mathematica input'  
> >> mean? The
> >> examples seem to only involve copying and pasting, which I don't  
> >> consider a
> >> great method for doing mathematics, or evaluation in place.
>
> >> I would like to understand how Defer might be used in expository  
> >> notebooks
> >> to clarify some piece of mathematics. The problem is that it  
> >> requires an
> >> interactive action, which would be invisible to a reader of a  
> >> notebook.  I
> >> think the idea of 'modification in place' is poor in technical  
> >> communication
> >> because it destroys the record of what was done.
>
> >> (In the examples below, whenever an output resulted in an  
> >> expression that
> >> copied as a box structure, I converted to InputForm to simplify the
> >> posting.)
>
> >> Here is a simple example:
>
> >> y = Defer[1 + 1]
> >> 1 + y                                               giving
>
> >> 1 + 1
>
> >> 1 + (1 + 1)
>
> >> I would prefer that the Defer expression would have evaluated in  
> >> the second
> >> statement but I guess it is logical that it didn't. If I write:
>
> >> 1 + y
>
> >> then select the y and Evaluate In Place I obtain the following,  
> >> which must
> >> then be further evaluated to obtain 3.
>
> >> 1 + 1 + 1
>
> >> 3
>
> >> A second example. I want to show an integral without evaluation  
> >> and then the
> >> evaluated result. I have to write the following expression, then  
> >> select the
> >> second line of output, evaluate in place, and then I obtain the  
> >> result - but
> >> as an Input cell. This is certainly a place where HoldForm would  
> >> be better.
>
> >> Defer[Integrate[x^2 Exp[-x], {x, 0, 1}]]
> >> %
> >> giving
>
> >> Integrate[x^2/E^x, {x, 0, 1}]
>
> >> 2 - 5/\[ExponentialE]                        (which is an Input cell)
>
> >> Here is third example. Defer does not evaluate and we obtain an error
> >> message.
>
> >> numb = Defer[2^67 - 1]
> >> FactorInteger[numb]                                       giving
>
> >> 2^67 - 1
>
> >> FactorInteger::"exact" :  "\"Argument \!\(\*SuperscriptBox[\"2\", \
> >> \"67\"]\) - 1 in FactorInteger[\!\(\*SuperscriptBox[\"2\", \"67\"]
> >> \) \
> >> - 1] is not an exact number\""
>
> >> FactorInteger[2^67 - 1]
>
> >> But it works if I copy and paste into FactorInteger.
>
> >> Now, look at the behavior of Ted's MathSource package.
>
> >> Needs["Enhancements`HoldTemporary`"]
>
> >> y = HoldTemporary[1 + 1]
> >> 1 + y                                                        giving
>
> >> 1 + 1
>
> >> 3
>
> >> The expression is evaluated if it is an argument of some function.
>
> >> HoldTemporary[Integrate[x^2 Exp[-x], {x, 0, 1}]]
> >> Identity[%]
> >> giving
>
> >> Integrate[x^2/E^x, {x, 0, 1}]
>
> >> 2 - 5/\[ExponentialE]       (which is an Output cell)
>
> >> numb = HoldTemporary[2^67 - 1]
> >> FactorInteger[numb]                                            giving
>
> >> 2^67 - 1
>
> >> {{193707721, 1}, {761838257287, 1}}
>
> >> Much better. I might be missing the point, but I don't think that  
> >> Defer is
> >> at all well designed.
>
> >> There is another Hold that is very useful. This is one that holds an
> >> operation but evaluates the arguments. We have a HoldOp statement  
> >> in the
> >> Tensorial package.
>
> >> Needs["TensorCalculus4V6`Tensorial`"]
>
> >> ?HoldOp
>
> >> HoldOp[operation][expr] will prevent the given operation from being
> >> evaluated in expr. Nevertheless, other operations within expr will be
> >> evaluated. Operation may be a pattern, including alternatives, that
> >> represents heads of expressions. The HoldOp can be removed with  
> >> ReleaseHold.
>
> >> One reason we want the arguments to evaluate is that the arguments  
> >> often
> >> contain tensor shortcut expressions and we want them evaluated to  
> >> show the
> >> full tensor expression inside some operation. However, there are  
> >> many other
> >> uses.
>
> >> f[x_] := Sin[x] \[ExponentialE]^x
>
> >> We would like f[x] to be evaluated inside the Integrate statement,  
> >> but hold
> >> the actual itegration.
>
> >> Integrate[f[x], {x, 0, \[Pi]}] // HoldOp[Integrate]
> >> % // ReleaseHold
> >> giving
>
> >> HoldForm[Integrate[E^x*Sin[x], {x, 0, Pi}]]
>
> >> 1/2 (1 + \[ExponentialE]^\[Pi])
>
> >> For exposition purposes we might want to keep the following  
> >> expression in
> >> the input order.
>
> >> \[Pi]  Sin[x] \[ExponentialE]^x // HoldOp[Times]
> >> % // ReleaseHold
> >> giving
>
> >> HoldForm[Pi*Sin[x]*E^x]
>
> >> \[ExponentialE]^x \[Pi] Sin[x]
>
> >> Often we will have cases where some operation has automatic built-
> >> in rules,
> >> such as linear and Leibnizian breakouts with differentiation.  
> >> Again, for
> >> exposition purposes, we might want to show the expression before  
> >> these rules
> >> are applied.
>
> >> g[x_] := x^2
>
> >> D[a f[x] g[x], x] // HoldOp[D]
> >> % // ReleaseHold                                    giving
>
> >> HoldForm[D[a*E^x*x^2*Sin[x], x]]
>
> >> a \[ExponentialE]^x x^2 Cos[x] + 2 a \[ExponentialE]^x x Sin[x] +
> >>  a \[ExponentialE]^x x^2 Sin[x]
>
> >> --
> >> David Park
> >> djmp... at comcast.nethttp://home.comcast.net/~djmpark/
>
> > Perhaps Defer is a kind of better-behaved Unevaluated:
>
> > 1. That disappears even when not an argument to another function
> > 2. And that terminates infinite evaluation immediately.
>
> > ?
>
> > Vince Virgilio
>
> Better-behaved Unevaluated ?  I can't see any (or almost any)  
> relation between the two, and certianly no "better behavior".
>
> Head[Unevaluated[1 + 1]]
> Plus
>
> Head[Defer[1 + 1]]
> Defer
>
> That's a pretty basic difference.
>
> Andrzej Kozlowski- Hide quoted text -
>
> - Show quoted text -

Perhaps Defer does not provide better, but complementary behavior, to
Unevaluated. They seem to be the same function that address
complementary evaluation "spaces". Unevaluated releases its argument
for evaluation at level > 0, while Defer releases arguments for
evaluation at level == 0.

Is this correct?

(I won't mind continuing this conversation with myself if there are no
takers.)

Vince Virgilio



  • Prev by Date: Re: What is the purpose of the Defer Command?
  • Next by Date: Underline string in colour
  • Previous by thread: Re: What is the purpose of the Defer Command?
  • Next by thread: Re: What is the purpose of the Defer Command?