Problem with Integral in mathematica 5.1
- To: mathgroup at smc.vnet.net
- Subject: [mg82493] Problem with Integral in mathematica 5.1
- From: cyrius24 <cyrilschamper at hotmail.com>
- Date: Mon, 22 Oct 2007 05:39:12 -0400 (EDT)
Hi, I have three integrals on a volume which normaly gives the same value when I make the integral on a cubic volume (same intervals for the three variables). In the starting functions which all depend on x,y and z, there is just a change in the numerator, it is x^2 for Gxx, y^2 for Gyy, and z^2 for Gzz. I obtain the same results at the end for Gxx and Gzz, but Gyy is different. And I actually don't understand. Below I paste the three different scripts for Gxx,Gyy, and Gzz. If you find something strange, please tell me. Thank you in advance for your response Best regards Gxx: f[x_, y_, z_] = 1/(4*Pi*yc)*(3* x^2/(Sqrt[x^2 + y^2 + z^2])^5 - 1/( Sqrt[x^2 + y^2 + z^2])^3 + k^2/2*(x^2/(Sqrt[x^2 + y^2 + z^2])^3 + 1/(Sqrt[x^2 + y^2 + z^2]))); g[x_, y_, z_] = Integrate[f[x, y, x], x]; h[y_, z_] = g[x2, y, z] - g[x1, y, z]; i[y_, z_] = Integrate[h[y, z], y]; j[z_] = i[y2, z] - i[y1, z]; l[z_] = Integrate[j[z], z]; res = l[z2] - l[z1] // FortranForm x1 = -0.5; x2 = 0.5; y1 = -0.5; y2 = 0.5; z1 = -0.5; z2 = 0.5; yc = 1 + I*5.56*10^(-11); k = 1.99*10^(-3) - I*1.99^(-3); res Gyy: f[x_, y_, z_] = 1/(4*Pi*yc)*(3* y^2/(Sqrt[x^2 + y^2 + z^2])^5 - 1/( Sqrt[x^2 + y^2 + z^2])^3 + k^2/2*(y^2/(Sqrt[x^2 + y^2 + z^2])^3 + 1/(Sqrt[x^2 + y^2 + z^2]))); g[x_, y_, z_] = Integrate[f[x, y, x], x]; h[y_, z_] = g[x2, y, z] - g[x1, y, z]; i[y_, z_] = Integrate[h[y, z], y]; j[z_] = i[y2, z] - i[y1, z]; l[z_] = Integrate[j[z], z]; res = l[z2] - l[z1] // FortranForm x1 = -0.5; x2 = 0.5; y1 = -0.5; y2 = 0.5; z1 = -0.5; z2 = 0.5; yc = 1 + I*5.56*10^(-11); k = 1.99*10^(-3) - I*1.99^(-3); res Gzz: f[x_, y_, z_] = 1/(4*Pi*yc)*(3* z^2/(Sqrt[x^2 + y^2 + z^2])^5 - 1/( Sqrt[x^2 + y^2 + z^2])^3 + k^2/2*(z^2/(Sqrt[x^2 + y^2 + z^2])^3 + 1/(Sqrt[x^2 + y^2 + z^2]))); g[x_, y_, z_] = Integrate[f[x, y, x], x]; h[y_, z_] = g[x2, y, z] - g[x1, y, z]; i[y_, z_] = Integrate[h[y, z], y]; j[z_] = i[y2, z] - i[y1, z]; l[z_] = Integrate[j[z], z]; res = l[z2] - l[z1] // FortranForm x1 = -0.5; x2 = 0.5; y1 = -0.5; y2 = 0.5; z1 = -0.5; z2 = 0.5; yc = 1 + I*5.56*10^(-11); k = 1.99*10^(-3) - I*1.99^(-3); res