Re: Problem with Integral in mathematica 5.1
- To: mathgroup at smc.vnet.net
- Subject: [mg82524] Re: Problem with Integral in mathematica 5.1
- From: cyrius24 <cyrilschamper at hotmail.com>
- Date: Tue, 23 Oct 2007 05:35:03 -0400 (EDT)
Hi, I found some errors in the last script. But, I remark if I change the order of the integrations, I do not have the same results! I paste two different cases below. Do you find same thing with your mathematica? Best regards If I integrate first z, then y, then x f[x_, y_, z_] = 1/(4*Pi*yc)*(3* x^2/(Sqrt[x^2 + y^2 + z^2])^5 - 1/( Sqrt[x^2 + y^2 + z^2])^3 + k^2/2*(x^2/(Sqrt[x^2 + y^2 + z^2])^3 + 1/(Sqrt[x^2 + y^2 + z^2]))); g[x_, y_, z_] = Integrate[f[x, y, z], z]; h[x_, y_] = g[x, y, z2] - g[x, y, z1]; i[x_, y_] = Integrate[h[x, y], y]; j[x_] = i[x, y2] - i[x, y1]; l[x_] = Integrate[j[x], x]; res = l[x2] - l[x1] // FortranForm x1 = -0.5; x2 = 0.5; y1 = -0.5; y2 = 0.5; z1 = -0.5; z2 = 0.5; yc = 1 + I*5.56*10^(-11); k = 1.99*10^(-3) - I*1.99*10^(-3); res If I integrate first x, then y, then z : f[x_, y_, z_] = 1/(4*Pi*yc)*(3* x^2/(Sqrt[x^2 + y^2 + z^2])^5 - 1/( Sqrt[x^2 + y^2 + z^2])^3 + k^2/2*(x^2/(Sqrt[x^2 + y^2 + z^2])^3 + 1/(Sqrt[x^2 + y^2 + z^2]))); g[x_, y_, z_] = Integrate[f[x, y, z], x]; h[y_, z_] = g[x2, y, z] - g[x1, y, z]; i[y_, z_] = Integrate[h[y, z], y]; j[z_] = i[y2, z] - i[y1, z]; l[z_] = Integrate[j[z], z]; res = l[z2] - l[z1] // FortranForm x1 = -0.5; x2 = 0.5; y1 = -0.5; y2 = 0.5; z1 = -0.5; z2 = 0.5; yc = 1 + I*5.56*10^(-11); k = 1.99*10^(-3) - I*1.99*10^(-3); res