Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2007
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: double integral of long expression in Mathematica

  • To: mathgroup at smc.vnet.net
  • Subject: [mg80884] Re: double integral of long expression in Mathematica
  • From: dimitris <dimmechan at yahoo.com>
  • Date: Wed, 5 Sep 2007 02:42:14 -0400 (EDT)
  • References: <fbjchu$66v$1@smc.vnet.net>

On 4     , 13:37, nege... at googlemail.com wrote:
> Dear All,
>
> Please if anyone knows how to evaluate the following two double
> integrals (see below: Int1 = f1 f2 f3 f4 and Int2 = f1 f2 f3 f5 )
> inMathematica. Preferebily in a closed for otherwise approximate
> method could also work. I have tried the Integrate command by
> separating variables and also on the entire equation but failed.
>
> The inputForm is also included in the body of the email.
>
> Please!,
>
> negede
>
> In[34]:=
> f1 = 1/(3*E^((-42.13+=CF=842)^2/18)*Sqrt[2*Pi]);
> f2= (5.778367760333042*^-19*(11.12+=CF=843)^12.13)/
> E^(4.4008893833458054*^-20*(11.\
> 12+=CF=843)^13.13);
> f3 = Abs[Cot[0.017453292519943295*=CF=842]];
> f4=0.0037739313253375532/
> E^(0.000044744314476429635*(449.96310600570723-55.\
> 69524532558123*=CF=843+1.*=CF=84*Cot[0.017453292519943295*=CF=
=842])^2);
> f5=
> (7.133612341840616*^-13*(-18.963106005707232+55.69524532558123*=CF=84=
3-1.*=
> =CF=84*
> \
> Cot[0.017453292519943295*=CF=842])^3.8)/E^(1.4861692378834617*^-13*(-=
18.\
> 963106005707232+55.69524532558123*=CF=843-1.*=CF=84*Cot[0.0174532=
9251994329=AD=
> 5*=CF=842])^4.8);
>
> In[39]:=
> Int1=f1 f2 f3 f4 //FullSimplify//InputForm
>
> Out[39]//InputForm=
> 2=2E899933125405506*^-22*
>  E^(-0.05555555555555555*(-42.13 + =CF=842)^2 -
>    4.4008893833458054*^-20*(11.12 + =CF=843)^13.13 -
>    0.000044744314476429635*(449.96310600570723 -
>       55.69524532558123*=CF=843 +
>       1.*=CF=84*Cot[0.017453292519943295*=CF=842])^2)*
>  (11.12 + =CF=843)^12.13*
>  Abs[Cot[0.017453292519943295*=CF=842]]
>
> In[40]:=
> Int2=f1 f2 f3 f5 //FullSimplify//InputForm
>
> Out[40]//InputForm=
> 5=2E481551451404547*^-32*
>  E^(-0.05555555555555555*(-42.13 + =CF=842)^2 -
>    4.4008893833458054*^-20*(11.12 + =CF=843)^13.13 -
>    1.4861692378834617*^-13*(-18.963106005707232 +
>       55.69524532558123*=CF=843 -
>       1.*=CF=84*Cot[0.017453292519943295*=CF=842])^4.8)*
>  (11.12 + =CF=843)^12.13*
>  Abs[Cot[0.017453292519943295*=CF=842]]*
>  (-18.963106005707232 + 55.69524532558123*=CF=843 -
>    1.*=CF=84*Cot[0.017453292519943295*=CF=842])^3.8
>
> Integrate[Int1,{=CF=842,35,50},{=CF=843,10,23}]
>
> Integrate[Int1,{=CF=842,35,50},{=CF=843,10,23}]

Unfortunately the code appeared in unreadable format.
Repost it again avoiding the use of special characters
like greek letters. Also, if you are interested in closed form
expressions DO NOT mix exact with inexact numbers.

Cheers
Dimitris



  • Prev by Date: Re: Re: ===$MaxMachineNumber}
  • Next by Date: Re: Unevaluated hypergeometric functions
  • Previous by thread: double integral of long expression in Mathematica
  • Next by thread: Creation of temporary copies of arrays when using x[[a]]=b