Double Integral of long expressions in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg80950] Double Integral of long expressions in Mathematica
- From: "Negede Abate" <negedea at googlemail.com>
- Date: Thu, 6 Sep 2007 05:25:55 -0400 (EDT)
Some of you sent me a message that the format of my code was corrupted and unreadable. I am posting my question again. I wanted to help me in solving the double integral for the two equations Int1 and Int2. Or any means of working around... my attempts failed *f1=1.9909018246727283*^-44*E^((4.681111111111111-0.05555555555555555*y)*y); f2=(5.778367760333042*^-19*(11.12+z)^12.13)/E^(4.4008893833458054*^-20*( 11.12+z)^13.13); f3=Abs[Cot[0.017453292519943295*y]]; f4=0.0037739313253375532/E^(0.000044744314476429635*(449.96310600570723 - 55.69524532558123*z + 1.*x*Cot[0.017453292519943295*y])^2); f5=(7.133612341840616*^-13*(-18.963106005707232+55.69524532558123*z-1.*x*Cot [0.017453292519943295*y])^3.8)/E^(1.4861692378834617*^-13*(- 18.963106005707232+55.69524532558123*z-1.*x*Cot[0.017453292519943295*y])^4.8 ); Int1= f1 f2 f3 f4; Int2= f1 f2 f3 f5; (*I wanted to get the following two double integrals*) Int11=Integrate[Int1,{y,35,50},{z,10,23}] Int22=Integrate[Int2,{y,35,50},{z,10,23}] Thanks, negede *