Re: Mellin Transform
- To: mathgroup at smc.vnet.net
- Subject: [mg81551] Re: [mg81518] Mellin Transform
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Wed, 26 Sep 2007 21:49:45 -0400 (EDT)
- References: <200709261046.GAA09299@smc.vnet.net>
Alexey Nikitin wrote: > Dear All, > > Should you tell me please, is it possible to calculate Mellin Transform > in Wolfram Mathematica? > > Alexey. Could use the definition as an integral. http://mathworld.wolfram.com/MellinTransform.html In[1]:= mellinTransform[f_,z_] := Integrate[f[t]*t^(z-1), {t,0,Infinity}] In[3]:= InputForm[mellinTransform[Sin,z]] Out[3]//InputForm= If[Inequality[-1, Less, Re[z], Less, 1], Gamma[z]*Sin[(Pi*z)/2], Integrate[t^(-1 + z)*Sin[t], {t, 0, Infinity}, Assumptions -> Re[z] <= -1 || Re[z] >= 1]] In[4]:= InputForm[mellinTransform[1/(1+#)&, z]] Out[4]//InputForm= If[Inequality[0, Less, Re[z], Less, 1], Pi*Csc[Pi*z], Integrate[t^(-1 + z)/(1 + t), {t, 0, Infinity}, Assumptions -> Re[z] <= 0 || Re[z] >= 1]] Daniel Lichtblau Wolfram Research
- References:
- Mellin Transform
- From: "Alexey Nikitin" <nikitin@proc.ru>
- Mellin Transform