Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2007
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Mellin Transform

  • To: mathgroup at smc.vnet.net
  • Subject: [mg81551] Re: [mg81518] Mellin Transform
  • From: Daniel Lichtblau <danl at wolfram.com>
  • Date: Wed, 26 Sep 2007 21:49:45 -0400 (EDT)
  • References: <200709261046.GAA09299@smc.vnet.net>

Alexey Nikitin wrote:
>   Dear All,
> 
>  Should you tell me please, is it possible to calculate Mellin Transform 
> in Wolfram Mathematica?
> 
> Alexey.

Could use the definition as an integral.

http://mathworld.wolfram.com/MellinTransform.html

In[1]:= mellinTransform[f_,z_] :=
   Integrate[f[t]*t^(z-1), {t,0,Infinity}]

In[3]:= InputForm[mellinTransform[Sin,z]]

Out[3]//InputForm=
If[Inequality[-1, Less, Re[z], Less, 1], Gamma[z]*Sin[(Pi*z)/2],
  Integrate[t^(-1 + z)*Sin[t], {t, 0, Infinity},
   Assumptions -> Re[z] <= -1 || Re[z] >= 1]]

In[4]:= InputForm[mellinTransform[1/(1+#)&, z]]

Out[4]//InputForm=
If[Inequality[0, Less, Re[z], Less, 1], Pi*Csc[Pi*z],
  Integrate[t^(-1 + z)/(1 + t), {t, 0, Infinity},
   Assumptions -> Re[z] <= 0 || Re[z] >= 1]]

Daniel Lichtblau
Wolfram Research



  • Prev by Date: Re: Strange RegionPlot
  • Next by Date: Undocumented change V5->V6 in Read
  • Previous by thread: Mellin Transform
  • Next by thread: Re: Mellin Transform