Re: Mellin Transform
- To: mathgroup at smc.vnet.net
- Subject: [mg81542] Re: Mellin Transform
- From: sashap <pavlyk at gmail.com>
- Date: Wed, 26 Sep 2007 21:45:08 -0400 (EDT)
- References: <fddemc$9rp$1@smc.vnet.net>
On Sep 26, 6:10 am, "Alexey Nikitin" <niki... at proc.ru> wrote: > Dear All, > > Should you tell me please, is it possible to calculate Mellin Transform > in Wolfram Mathematica? > > Alexey. Hey Alexey, Mathematica does not have a built-in functionality of MellinTransform, it has related LaplaceTransform. You might either use LaplaceTransform to get to the answer, or use direct definition in terms of integrate: In version 6: In[4]:= MellinTransform[f_, x_, s_, o : OptionsPattern[Integrate]] := Integrate[x^(s - 1) f, {x, 0, Infinity}, o] In[6]:= MellinTransform[Exp[-a x], x, s, Assumptions -> a > 0 \[And] s > 0] Out[6]= a^-s Gamma[s] In[8]:= MellinTransform[BesselK[2, x], x, s, Assumptions -> s > 2] Out[8]= 2^(-2+s) Gamma[-1+s/2] Gamma[1+s/2] In[10]:= MellinTransform[ArcSin[x], x, s, Assumptions -> -1 < s < 0] Out[10]= -((\[ImaginaryI] \[ExponentialE]^(-(1/2) \[ImaginaryI] \[Pi] \ s) Gamma[1-s/2] Gamma[(1+s)/2])/(Sqrt[\[Pi]] s^2)) Hope it helps, Oleksandr Pavlyk Special Functions Developer Wolfram Research