Re: Mellin Transform
- To: mathgroup at smc.vnet.net
- Subject: [mg81582] Re: Mellin Transform
- From: chuck009 <dmilioto at comcast.com>
- Date: Fri, 28 Sep 2007 02:13:23 -0400 (EDT)
Then I'd numerically integrate the transform to recover the function (don't forget the i): fhat[x_] := (1/(2*Pi*I))*NIntegrate[ I*((Gamma[z]*Sin[Pi*(z/2)])/x^z) /. z -> 0.2 + I*y, {y, -100, 100}] stable = Table[{x, fhat[x]}, {x, 0.001, 2*Pi, 0.1}] ListPlot[stable] Pretty close for my money :) > > Could use the definition as an integral. > > http://mathworld.wolfram.com/MellinTransform.html > > In[1]:= mellinTransform[f_,z_] := > Integrate[f[t]*t^(z-1), {t,0,Infinity}] >