Re: Cannot Factor an expression
- To: mathgroup at smc.vnet.net
- Subject: [mg87618] Re: [mg87563] Cannot Factor an expression
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Mon, 14 Apr 2008 05:46:33 -0400 (EDT)
- References: <200804130731.DAA11432@smc.vnet.net>
Factor is not "effectively the reverse of Expand", except in the case of when you expand an expression that has been factored in *the usual sense*, in other words, into multiplicative factors (don't forget that a "factor" is the same thing as a "divisor"). Other kinds of "pseudo- factorizations", like the one you want, are not unique, and Mathematica can't read your mind to find out which one you like best. For example: q = Sum[(Subscript[z, i] - 1)*(=CE=BC - Subscript[x, i])^2, {i, 1, 3}] (Subscript[z, 1] - 1)*(=CE=BC - Subscript[x, 1])^2 + (=CE=BC - Subscript[x, 2])^2*(Subscript[z, 2] - 1) + (=CE=BC - Subscript[x, 3])^2*(Subscript[z, 3] - 1) p = Expand[q]; FullSimplify[p] (Subscript[z, 1] + Subscript[z, 2] + Subscript[z, 3] - 3)*\[Mu]^2 - 2*Subscript[x, 1]*(Subscript[z, 1] - 1)*\[Mu] - 2*Subscript[x, 2]*(Subscript[z, 2] - 1)*\[Mu] - 2*Subscript[x, 3]*(Subscript[z, 3] - 1)*\[Mu] + Subscript[x, 1]^2*(Subscript[z, 1] - 1) + Subscript[x, 2]^2*(Subscript[z, 2] - 1) + Subscript[x, 3]^2*(Subscript[z, 3] - 1) in by many criteria not worse then the one you want. However, there is, in fact, a way to get the form q by starting from p, as long as you know that that is what you want: Factor[First[PolynomialReduce[q, {Subscript[z, 1] - 1, Subscript[z, 2] - 1, Subscript[z, 3] - 1}]]] . {Subscript[z, 1] - 1, Subscript[z, 2] - 1, Subscript[z, 3] - 1} (Subscript[z, 1] - 1)*(\[Mu] - Subscript[x, 1])^2 + (\[Mu] - Subscript[x, 2])^2*(Subscript[z, 2] - 1) + (\[Mu] - Subscript[x, 3])^2*(Subscript[z, 3] - 1) Andrzej Kozlowski On 13 Apr 2008, at 16:31, Francogrex wrote: > If Factor is effectively the reverse of expand, then how come factor > cannot find back the expression below? > > Expand[Sum[(Subscript[z, i] - 1)*(\[Mu] - Subscript[x, i])^2, {i, 1, > 3}]] > > Factor[-3*\[Mu]^2 + 2*\[Mu]*Subscript[x, 1] - Subscript[x, 1]^2 + > 2*\[Mu]*Subscript[x, 2] - Subscript[x, 2]^2 + 2*\[Mu]*Subscript[x, > 3] - > Subscript[x, 3]^2 + \[Mu]^2*Subscript[z, 1] - > 2*\[Mu]*Subscript[x, 1]*Subscript[z, 1] + Subscript[x, 1]^2* > Subscript[z, 1] + \[Mu]^2*Subscript[z, 2] - > 2*\[Mu]*Subscript[x, 2]*Subscript[z, 2] + Subscript[x, 2]^2* > Subscript[z, 2] + \[Mu]^2*Subscript[z, 3] - > 2*\[Mu]*Subscript[x, 3]*Subscript[z, 3] + Subscript[x, 3]^2* > Subscript[z, 3]] > > Is there some additional arguments to the function factor so that it > can find back the original: > Sum[(Subscript[z, i] - 1)*(\[Mu] - Subscript[x, i])^2, {i, 1, 3}] > > Thanks for help with this >
- Follow-Ups:
- Re: Re: Cannot Factor an expression
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Re: Cannot Factor an expression
- References:
- Cannot Factor an expression
- From: Francogrex <franco@grex.org>
- Cannot Factor an expression