Re: Re: Cannot Factor an expression
- To: mathgroup at smc.vnet.net
- Subject: [mg87683] Re: [mg87618] Re: [mg87563] Cannot Factor an expression
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Tue, 15 Apr 2008 05:55:25 -0400 (EDT)
- References: <200804130731.DAA11432@smc.vnet.net> <200804140946.FAA08308@smc.vnet.net>
I got my p's and q's mixed up in addition to having some garbled input. So here we go again: q = Sum[(Subscript[z, i] - 1)* (\[Mu] - Subscript[x, i])^2, {i, 1, 3}] (Subscript[z, 1] - 1)*(\[Mu] - Subscript[x, 1])^2 + (\[Mu] - Subscript[x, 2])^2*(Subscript[z, 2] - 1) + (\[Mu] - Subscript[x, 3])^2*(Subscript[z, 3] - 1) In[2]:= p = Expand[q]; Factor[First[PolynomialReduce[p, {Subscript[z, 1] - 1, Subscript[z, 2] - 1, Subscript[z, 3] - 1}]]] . {Subscript[z, 1] - 1, Subscript[z, 2] - 1, Subscript[z, 3] - 1} (Subscript[z, 1] - 1)*(\[Mu] - Subscript[x, 1])^2 + (\[Mu] - Subscript[x, 2])^2*(Subscript[z, 2] - 1) + (\[Mu] - Subscript[x, 3])^2*(Subscript[z, 3] - 1) All free and no need to load any Add On packages ;-) Andrzej Kozlowski On 14 Apr 2008, at 18:46, Andrzej Kozlowski wrote: > Factor is not "effectively the reverse of Expand", except in the case > of when you expand an expression that has been factored in *the usual > sense*, in other words, into multiplicative factors (don't forget that > a "factor" is the same thing as a "divisor"). Other kinds of "pseudo- > factorizations", like the one you want, are not unique, and > Mathematica can't read your mind to find out which one you like best. > For example: > > q = Sum[(Subscript[z, i] - 1)*(=CE=BC - Subscript[x, i])^2, {i, 1, 3}] > > (Subscript[z, 1] - 1)*(=CE=BC - Subscript[x, 1])^2 + > (=CE=BC - Subscript[x, 2])^2*(Subscript[z, 2] - 1) + > (=CE=BC - Subscript[x, 3])^2*(Subscript[z, 3] - 1) > > p = Expand[q]; > > FullSimplify[p] > > (Subscript[z, 1] + Subscript[z, 2] + Subscript[z, 3] - 3)*\[Mu]^2 - > 2*Subscript[x, 1]*(Subscript[z, 1] - 1)*\[Mu] - > 2*Subscript[x, 2]*(Subscript[z, 2] - 1)*\[Mu] - > 2*Subscript[x, 3]*(Subscript[z, 3] - 1)*\[Mu] + > Subscript[x, 1]^2*(Subscript[z, 1] - 1) + > Subscript[x, 2]^2*(Subscript[z, 2] - 1) + > Subscript[x, 3]^2*(Subscript[z, 3] - 1) > > in by many criteria not worse then the one you want. > > However, there is, in fact, a way to get the form q by starting from > p, as long as you know that that is what you want: > > > Factor[First[PolynomialReduce[q, {Subscript[z, 1] - 1, > Subscript[z, 2] - 1, Subscript[z, 3] - 1}]]] . > {Subscript[z, 1] - 1, Subscript[z, 2] - 1, Subscript[z, 3] - 1} > > (Subscript[z, 1] - 1)*(\[Mu] - Subscript[x, 1])^2 + > (\[Mu] - Subscript[x, 2])^2*(Subscript[z, 2] - 1) + > (\[Mu] - Subscript[x, 3])^2*(Subscript[z, 3] - 1) > > Andrzej Kozlowski > > > On 13 Apr 2008, at 16:31, Francogrex wrote: >> If Factor is effectively the reverse of expand, then how come factor >> cannot find back the expression below? >> >> Expand[Sum[(Subscript[z, i] - 1)*(\[Mu] - Subscript[x, i])^2, {i, 1, >> 3}]] >> >> Factor[-3*\[Mu]^2 + 2*\[Mu]*Subscript[x, 1] - Subscript[x, 1]^2 + >> 2*\[Mu]*Subscript[x, 2] - Subscript[x, 2]^2 + 2*\[Mu]*Subscript[x, >> 3] - >> Subscript[x, 3]^2 + \[Mu]^2*Subscript[z, 1] - >> 2*\[Mu]*Subscript[x, 1]*Subscript[z, 1] + Subscript[x, 1]^2* >> Subscript[z, 1] + \[Mu]^2*Subscript[z, 2] - >> 2*\[Mu]*Subscript[x, 2]*Subscript[z, 2] + Subscript[x, 2]^2* >> Subscript[z, 2] + \[Mu]^2*Subscript[z, 3] - >> 2*\[Mu]*Subscript[x, 3]*Subscript[z, 3] + Subscript[x, 3]^2* >> Subscript[z, 3]] >> >> Is there some additional arguments to the function factor so that it >> can find back the original: >> Sum[(Subscript[z, i] - 1)*(\[Mu] - Subscript[x, i])^2, {i, 1, 3}] >> >> Thanks for help with this >> > >
- Follow-Ups:
- Re: Re: Re: Cannot Factor an expression
- From: Syd Geraghty <sydgeraghty@mac.com>
- Re: Re: Re: Cannot Factor an expression
- References:
- Cannot Factor an expression
- From: Francogrex <franco@grex.org>
- Re: Cannot Factor an expression
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Cannot Factor an expression