Re: Re: Defining derivatives
- To: mathgroup at smc.vnet.net
- Subject: [mg88025] Re: [mg87996] Re: Defining derivatives
- From: "W_Craig Carter" <ccarter at mit.edu>
- Date: Tue, 22 Apr 2008 06:27:47 -0400 (EDT)
- References: <fu9vnl$igu$1@smc.vnet.net> <fueeme$b6g$1@smc.vnet.net>
> > Derivative[1][f1] = f2; > > > > What can one _do_ with this construction? > Can one then plot or evaluate f1, without further ado? Fun, amusement, education, research, profit, ego... Here is an example that satisfies 4/6. (*caveat pedants, this is intended as a pedagogical exercise, lifted from my course notes, flames ignored*) GraphFunction[x_, y_] := ((x - y) (x + y))/(1 + (x + y)^2) (*simple graph f(x,y) ) $Assumptions = {x \[Element] Reals, y \[Element] Reals}; (*give simplify a hint *) CurvatureOfGraph[f_, x_, y_] := (*def. of curvature of f(x,y)*) FullSimplify[ (*silly to call simplify each time the function is called? not always*) Module[{dfdx = D[f[x, y], x], dfdy = D[f[x, y], y], d2fdx2 = D[f[x, y], {x, 2}], d2fdy2 = D[f[x, y], {y, 2}], d2fdxdy = D[f[x, y], x, y]} , Return[((1 + dfdx^2) d2fdx2 - 2 dfdx dfdy d2fdxdy + (1 + dfdy^2) d2fdy2)/ Sqrt[1 + dfdx^2 + dfdy^2]]]] CurvFunc = (*mysterious function definition for out particular surface*) Function[{x, y}, Evaluate[CurvatureOfGraph[GraphFunction, x, y]]] (*enigmatic defintions for partials on our surface*) dfdx = Function[{x, y}, Evaluate[FullSimplify[D[GraphFunction[x, y], x]]]] dfdy = Function[{x, y}, Evaluate[FullSimplify[D[GraphFunction[x, y], y]]]] angle[x_] := ((Pi/2 + ArcTan[x])/Pi) (*plot of function showing height, curvature, and normals, all in one go*) plotcurvature = Plot3D[GraphFunction[x, y], {x, -3, 3}, {y, 3, -3}, MeshFunctions -> (CurvFunc[#1, #2] &), MeshStyle -> Thick, PlotLabel -> "Curvatures(level sets) and Normals(color variation)", ColorFunction -> (Glow[ RGBColor[angle[dfdx[#1, #2]], angle[dfdy[#1, #2]], 0.75]] &),ColorFunctionScaling -> False, Lighting -> None] (*I think that's something*) -- W. Craig Carter