Re: 2*m^z - m^z = ?
- To: mathgroup at smc.vnet.net
- Subject: [mg88149] Re: [mg88104] 2*m^z - m^z = ?
- From: Syd Geraghty <sydgeraghty at mac.com>
- Date: Sat, 26 Apr 2008 03:44:45 -0400 (EDT)
- References: <200804250926.FAA08036@smc.vnet.net>
Alexy, Not so much an explanation (which I will leave to WR experts) but another illustration that IF you are a "true believer" in Mathematica you can find a way to get the result or form you desire with a little patient exploration and trying. Table[{2*m^z - m^z, Collect[FullSimplify[2*m^z - m^z], z, Modulus -> 2]}, {m, 1, 11}] // TableForm ( { {1, 1}, {-2^z + 2^(z + 1), 2^z}, {3^z, 3^z}, {2^(2 z + 1) - 4^z, 4^z}, {5^z, 5^z}, {2^(z + 1) 3^z - 6^z, 6^z}, {7^z, 7^z}, {2^(3 z + 1) - 8^z, 8^z}, {9^z, 9^z}, {2^(z + 1) 5^z - 10^z, 10^z}, {11^z, 11^z} } ) HTH ... Syd Syd Geraghty B.Sc, M.Sc. sydgeraghty at mac.com My System Mathematica 6.0.2.1 for Mac OS X x86 (64 - bit) (March 13, 2008) MacOS X V 10.5.2 MacBook Pro 2.33 Ghz Intel Core 2 Duo 2GB RAM On Apr 25, 2008, at 2:26 AM, Alexey Popkov wrote: > Hello, > What do you think about this: > > Table[ > {2*m^z - m^z, > FullSimplify[2*m^z - m^z]}, > {m, 1, 21}] // TableForm > > The answer is very interesting (only odd numbers are treated well): > > 1 1 > -2^z + 2^(1 + z) 2^z > 3^z 3^z > 2^(1 + 2*z) - 4^z 4^z > 5^z 5^z > 2^(1 + z)*3^z - 6^z 2^(1 + z)*3^z - 6^z > 7^z 7^z > 2^(1 + 3*z) - 8^z 8^z > 9^z 9^z > 2^(1 + z)*5^z - 10^z 2^(1 + z)*5^z - 10^z > 11^z 11^z > 2^(1 + 2*z)*3^z - 12^z 2^(1 + 2*z)*3^z - 12^z > 13^z 13^z > 2^(1 + z)*7^z - 14^z 2^(1 + z)*7^z - 14^z > 15^z 15^z > 2^(1 + 4*z) - 16^z 16^z > 17^z 17^z > 2^(1 + z)*9^z - 18^z 2^(1 + z)*9^z - 18^z > 19^z 19^z > 2^(1 + 2*z)*5^z - 20^z 2^(1 + 2*z)*5^z - 20^z > 21^z 21^z > > Can anyone explain the reason for this behavior? >
- References:
- 2*m^z - m^z = ?
- From: Alexey Popkov <popkov@gmail.com>
- 2*m^z - m^z = ?