Re: Manipulate with specified step size
- To: mathgroup at smc.vnet.net
- Subject: [mg91045] Re: Manipulate with specified step size
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Mon, 4 Aug 2008 03:25:35 -0400 (EDT)
- References: <g6h5em$h1k$1@smc.vnet.net>
Hi, on your t-slider is on the left side a little minus, you may call the slider with Manipulate[ ___, {t, 0, 8, 1, Appearance -> "Open"} ] and than you see the animation control. And DynamicModule[{convolved}, convolved[z_] = conv[x, y, z] // PiecewiseExpand; Manipulate[ Show[ Plot[{Tooltip[x[s], "f(s)"], Tooltip[y[t - s], "g(t-s)"]}, {s, 0, 8}, PlotRange -> {{-.01, 8}, {-.4, 2}}, PlotStyle -> {{GrayLevel[.85]}, {GrayLevel[.85]}}, Exclusions -> None], Plot[Tooltip[x[s] y[t - s], "f(s)g(t-s)"], {s, t, 8.1}, PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black, Exclusions -> None], Plot[Evaluate[x[s] y[t - s]], {s, -.01, t}, Filling -> Axis, PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black, Exclusions -> None], Plot[Evaluate[Tooltip[convolved[ z], "(f*g)(t)"]], {z, -.01, t}, PlotRange -> {{-.01, 8}, {0, 16}}, PlotStyle -> Blue, Exclusions -> None], Graphics[{Dashed, Line[{{t, -6}, {t, convolved[t]}}]}], Graphics[ Text[Style["t", Italic, Bold, Blue, 14], {t - .1, -6 + .2}]] ] , {t, 0, 8, 1, Appearance -> "Open"}] ] should be faster. Regards Jens J Davis wrote: > I wanted to revisit the issue in this thread: > > http://groups.google.com/group/comp.soft-sys.math.mathematica/browse_thread/thread/4e94adfcb4cd4491/303f37e538bcd6e1?lnk=gst&q=manipulate+play#303f37e538bcd6e1 > > I have the following: > > conv[f_, g_, t_] = \!\( > \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(f[s] > g[t - s] \[DifferentialD]s\)\); > > x[t_] = UnitStep[t - 2] - UnitStep[t - 3]; > y[t_] = UnitStep[t - 2] - UnitStep[t - 3]; > > > Manipulate[ > Show[ > Plot[{Tooltip[x[s], "f(s)"], Tooltip[y[t - s], "g(t-s)"]}, {s, 0, > 8}, PlotRange -> {{-.01, 8}, {-.4, 2}}, > PlotStyle -> {{GrayLevel[.85]}, {GrayLevel[.85]}}, > Exclusions -> None], > Plot[Tooltip[x[s] y[t - s], "f(s)g(t-s)"], {s, t, 8.1}, > PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black, > Exclusions -> None], > Plot[Evaluate[x[s] y[t - s]], {s, -.01, t}, Filling -> Axis, > PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black, > Exclusions -> None], > Plot[Evaluate[Tooltip[conv[x, y, z], "(f*g)(t)"]], {z, -.01, t}, > PlotRange -> {{-.01, 8}, {0, 16}}, PlotStyle -> Blue, > Exclusions -> None], > Graphics[{Dashed, Line[{{t, -6}, {t, conv[x, y, t]}}]}], > Graphics[ > Text[Style["t", Italic, Bold, Blue, 14], {t - .1, -6 + .2}]] > ] > , {t, 0, 8, 1} > > When I move the slider the dynamics are slow to evaluate. I would be > content to simply "play" the animation at the discrete values t=0 to > t=8 in increments of 1. However, I have been unable to obtain that > result. > > Suggestions? > > Thanks, > John > > PS I am also surprised that these computations are slow since these > are rather simple functions involved in the convolution. >