Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2008

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Manipulate with specified step size

  • To: mathgroup at smc.vnet.net
  • Subject: [mg91044] Re: Manipulate with specified step size
  • From: "David Park" <djmpark at comcast.net>
  • Date: Mon, 4 Aug 2008 03:25:24 -0400 (EDT)
  • References: <g6h5em$h1k$1@smc.vnet.net>

The key is to precompute and simplify the conv[x,y,z] function.

c[z_] = conv[x, y, z] // Simplify
\[Piecewise] {
  {6 - z, 5 < z <= 6},
  {-4 + z, 4 < z <= 5}
 }


Substitute that into your Manipulate statement and everything will work 
smoothly. Also, you don't have to move in steps of 1.

Here is a Presentations package version of it:

Needs["Presentations`Master`"]

conv[f_, g_, t_] = \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(f[s]
    g[t - s] \[DifferentialD]s\)\);

x[t_] = UnitStep[t - 2] - UnitStep[t - 3];
y[t_] = UnitStep[t - 2] - UnitStep[t - 3];

c[z_] = conv[x, y, z] // Simplify

Manipulate[
 Draw2D[
  {Draw[{x[s], y[t - s]}, {s, 0, 8},
    PlotRange -> {{-.01, 8}, {-.4, 2}},
    PlotStyle -> {{GrayLevel[.85]}, {GrayLevel[.85]}},
    Exclusions -> None],
   Draw[x[s] y[t - s], {s, t, 8.1}, PlotRange -> {{0, 8.1}, {0, 16}},
    PlotStyle -> Black, Exclusions -> None],
   Draw[Evaluate[x[s] y[t - s]], {s, -.01, t}, Filling -> Axis,
    PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black,
    Exclusions -> None],
   Draw[c[z], {z, -.01, t}, PlotRange -> {{-.01, 8}, {0, 16}},
    PlotStyle -> Blue, Exclusions -> None], {Dashed,
    Line[{{t, -6}, {t, c[t]}}]},
   Text[Style["t", Italic, Bold, Blue, 14], {t - .1, -1.5 + .2}]},
  Frame -> False,
  PlotRange -> {{-.5, 8.5}, {-1.5, 2}}
  ],
 Style["Convolution Demonstration", 16],
 Delimiter,
 {t, 0, 8, Appearance -> "Labeled"}
 ]

-- 
David Park
djmpark at comcast.net
http://home.comcast.net/~djmpark/


"J Davis" <texasAUtiger at gmail.com> wrote in message 
news:g6h5em$h1k$1 at smc.vnet.net...
>I wanted to revisit the issue in this thread:
>
> http://groups.google.com/group/comp.soft-sys.math.mathematica/browse_thread/thread/4e94adfcb4cd4491/303f37e538bcd6e1?lnk=gst&q=manipulate+play#303f37e538bcd6e1
>
> I have the following:
>
> conv[f_, g_, t_] = \!\(
> \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(f[s]
>    g[t - s] \[DifferentialD]s\)\);
>
> x[t_] = UnitStep[t - 2] - UnitStep[t - 3];
> y[t_] = UnitStep[t - 2] - UnitStep[t - 3];
>
>
> Manipulate[
> Show[
>  Plot[{Tooltip[x[s], "f(s)"], Tooltip[y[t - s], "g(t-s)"]}, {s, 0,
>    8}, PlotRange -> {{-.01, 8}, {-.4, 2}},
>   PlotStyle -> {{GrayLevel[.85]}, {GrayLevel[.85]}},
>   Exclusions -> None],
>  Plot[Tooltip[x[s] y[t - s], "f(s)g(t-s)"], {s, t, 8.1},
>   PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black,
>   Exclusions -> None],
>  Plot[Evaluate[x[s] y[t - s]], {s, -.01, t}, Filling -> Axis,
>   PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black,
>   Exclusions -> None],
>  Plot[Evaluate[Tooltip[conv[x, y, z], "(f*g)(t)"]], {z, -.01, t},
>   PlotRange -> {{-.01, 8}, {0, 16}}, PlotStyle -> Blue,
>   Exclusions -> None],
>  Graphics[{Dashed, Line[{{t, -6}, {t, conv[x, y, t]}}]}],
>  Graphics[
>   Text[Style["t", Italic, Bold, Blue, 14], {t - .1, -6 + .2}]]
>  ]
> , {t, 0, 8, 1}
>
> When I move the slider the dynamics are slow to evaluate. I would be
> content to simply "play" the animation at the discrete values t=0 to
> t=8 in increments of 1. However, I have been unable to obtain that
> result.
>
> Suggestions?
>
> Thanks,
> John
>
> PS I am also surprised that these computations are slow since these
> are rather simple functions involved in the convolution.
> 



  • Prev by Date: Re: Manipulate with specified step size
  • Next by Date: Re: When is a List not a List
  • Previous by thread: Re: Manipulate with specified step size
  • Next by thread: Re: When is a List not a List