Trouble Implementing Schelling's Segregation Model
- To: mathgroup at smc.vnet.net
- Subject: [mg91286] Trouble Implementing Schelling's Segregation Model
- From: Steve_Kinsella <stephen.kinsella at gmail.com>
- Date: Wed, 13 Aug 2008 04:41:24 -0400 (EDT)
Hi All, I'm trying to write a demonstration for a class on Schelling's 1978 segregation model. An implementation exists from Gaylord and D'Andria, 1998, but it's not playing ball with Mathematica 6.0. If anyone wants to take a pop at the code below, I'd appreciate it. Thanks, Steve (*Schelling Model (1978, 147 - 153) Demonstration Model uses a square n*n lattice with wraparound boundary conditions \ with a population density p of individuals occupying lattice sites \ and the rest empty. System evolves over t time steps. *) neighborhood[n_, p_, v_, w_, t_] := Module[{walk, movestay, society, RND, Moore, GN} , RND := RandomInteger[ {1, 4}] society := Table[Floor[p + RandomInteger[]], {n}, {n}] /. 1 :> {RND, Table[Integer, {1, w}], {v}}; movestay[0, __] := 0; movestay[{a_, b_}, res__] := {a* Round[1 - Count[Map[ Count[b - #[[2]], 0] &, {res}/.0 -> {0, 0}], _?{# >= v/2 &}]/8.] , b }; (*Walk Rules*) Moore[func_, lat_] := MapThread[func, Map[RotateRight[lat, #] &, {{0, 0}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}, {1, -1}, {-1, -1}, {-1, 1}, {1, 1}} , 2]; GN[func_, lat_] := MapThread[func, Map[RotateRight[lat, #] &, {{0, 0}, {1, 0}, {0, -1}, {-1, 0}, {0, 1}, {1, -1}, {-1, -1}, {-1, 1}, {1, 1}, {2, 0}, {0, -2}, {-2, 0}, {0, 2}}], 2]; NestList[GN[walk, Moore[movestay, #]] &, society, t]]] SeedRandom[9] results = neighborhood[20, 0.6, 1, 2, 500] Show[GraphicsArray[ Map[Show[Graphics[ Raster[# /. {0 -> RGBColor[0.7, 0.7, 0.7], {_, {1}} -> RGBColor[0, 1, 0], {_, {2}} -> RGBColor[0, 0, 1]}]], AspectRatio -> Automatic, DisplayFunction -> Identity] &, {First[ results], Last[results]}]]]