Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2008

[Date Index] [Thread Index] [Author Index]

Search the Archive

Problem with NMinimize

  • To: mathgroup at smc.vnet.net
  • Subject: [mg91549] Problem with NMinimize
  • From: shama shahbaz <shammashahbaz at yahoo.com>
  • Date: Wed, 27 Aug 2008 06:41:09 -0400 (EDT)
  • Reply-to: shammashahbaz at yahoo.com

i want to minimize the absolute value of this Equation
e1=((0.0676+0.0067*I)*EXP[p1*I] )+(0.1633-0.0495*I)+(0.0676-0.0555*I)+((0.1633-0.3056*I)*EXP[p2*I]);
e2=((0.1060-0.0708*I)*EXP[p1*I])+( 0.0708-0.1060*I)+( 0.0293-0.1474*I)+((-0.0439-0.2207*I)*EXP[p2*I]);
e3=((0.0495-0.1633*I)*EXP[p1*I])+( -0.0067-0.0676*I)+( -0.0873-0.1633*I)+(( -0.0824-0.0676*I)*EXP[p2*I]);
e4=((-0.0732-0.1768*I)*EXP[p1*I])+( 0*I)+( -0.1768-0.0732*I)+(( 0*I)*EXP[p2*I]);
e5=((-0.1633-0.0873*I)*EXP[p1*I])+( 0.0676+0.0067*I)+( -0.1633+0.0495*I)+(( 0.0676-0.0555*I)*EXP[p2*I]);
 
c1=Abs[e1];
c2=Abs[e2];
c3=Abs[e3];
c4=Abs[e4];
c5=Abs[e5];
 
 
Minimize[{(c1)2+(c2)2+(c3)2+(c4)^2 +(c5)^2,0=A3p1=A32*Pi,0=A3p2=A32*Pi},{p1,p2}]
 
 
but it did not give me any answer
 
but i know that NMinimize can minimize the squared absolute value of the complex number as i have tried as following
 
q=(1.41*(Exp[Pi/4*I]+Exp[p*I]+1+Exp[p*I]*Exp[Pi*I/4]))^2;
q1=(1.41*(Exp[Pi/5*I]+Exp[p1*I]+1+Exp[p1*I]*Exp[Pi/7*I]))^2;
expression=Abs[q]+Abs[q1];
NMinimize[{expression,0<p<2 Pi,0<p1<2 Pi},{p,p1}]
 
it gives me answer
 
{0.00453162,{p=AE3.14159,p1=AE3.23135}}
 
i dont know where i am wrong .....can some one point that out
 
 
Regards


  • Prev by Date: Re: Eliminating intermediate results
  • Next by Date: Plotting against Normal
  • Previous by thread: Re: coloring leaves of a dendrogram
  • Next by thread: Re: Problem with NMinimize