Re: Bug in the FourierSinCoefficient function
- To: mathgroup at smc.vnet.net
- Subject: [mg85404] Re: [mg85340] Bug in the FourierSinCoefficient function
- From: Devendra Kapadia <dkapadia at wolfram.com>
- Date: Sat, 9 Feb 2008 04:16:56 -0500 (EST)
- References: <200802061136.GAA07063@smc.vnet.net>
On Wed, 6 Feb 2008, Pianiel wrote: > Dear Mathematica experts, > > In Mathematica 6.0 when I type > > << FourierSeries` > > FourierSinCoefficient[Sin[2 \[Pi] t], t, n] > FourierSinCoefficient[Sin[2 \[Pi] t], t, 1] > > The first line gives 0. > and the second gives 1. > > Do you know if Wolfram Research will solve this bug soon? > > Mathematica is such a great program... > > Sincerely > > Pianiel > Hello, Thank you for reporting the problem with using symbolic 'n' in the above FourierSinCoefficient example. The FourierSinCoefficient is computed using symbolic integration, and the incorrect result (for n = 1) occurs when the assumption that 'n' is an integer is specified in the call to Integrate. Hence, a partial workaround for the problem is to use Integrate directly, without assumptions, and to find the limiting value of the answer for n = 1, as shown below. ========================== In[1]:= $Version Out[1]= 6.0 for Linux x86 (32-bit) (June 28, 2007) In[2]:= 2*Integrate[ Sin[2*Pi*t]*Sin[2*n*Pi*t], {t, -1/2, 1/2}] 2 Sin[n Pi] Out[2]= ----------- 2 Pi - n Pi In[3]:= Limit[%, n -> 1] Out[3]= 1 In[4]:= Table[%%, {n, 2, 10}] Out[4]= {0, 0, 0, 0, 0, 0, 0, 0, 0} In[5]:= <<FourierSeries` In[6]:= Table[FourierSinCoefficient[Sin[2*Pi*t], t, n], {n, 1, 10}] Out[6]= {1, 0, 0, 0, 0, 0, 0, 0, 0, 0} ======================= We apologize for the confusion caused by this problem. Sincerely, Devendra Kapadia. Wolfram Research, Inc.
- References:
- Bug in the FourierSinCoefficient function
- From: Pianiel <pdpdel@gmail.com>
- Bug in the FourierSinCoefficient function