Re: Re: Visualising a spherical triangle
- To: mathgroup at smc.vnet.net
- Subject: [mg85476] Re: [mg85431] Re: Visualising a spherical triangle
- From: Syd Geraghty <sydgeraghty at mac.com>
- Date: Mon, 11 Feb 2008 06:19:41 -0500 (EST)
- References: <fojr91$gk2$1@smc.vnet.net> <200802101018.FAA17855@smc.vnet.net>
Jens, When I run the section With[{nSubdivde = 4}, Graphics3D[{Sphere[{0, 0, 0}, 1], ToSphere[ SubDivide[Polygon[{{Pi/3, 0}, {2 Pi/3, 0}, {Pi/3, Pi/3}}], nSubdivde], 1.1] /. Polygon[pnts_] :> {Hue[Random[]], Polygon[pnts]}}]] I get ToSphere is not a Graphics3D primitive or directive. Is this a version issue? Syd Syd Geraghty B.Sc, M.Sc. sydgeraghty at mac.com My System Mathematica 6.0.1 for Mac OS X x86 (64 - bit) (June 19, 2007) MacOS X V 10.5 .10 MacBook Pro 2.33 Ghz Intel Core 2 Duo 2GB RAM On Feb 10, 2008, at 2:18 AM, Jens-Peer Kuska wrote: > Hi, > > what is with > > SubDivide[Polygon[tri : {{_, _} ..}]] := > Module[{center}, > center = Mean /@ Transpose[{tri, RotateLeft[tri]}]; > Polygon /@ > Append[Transpose[{RotateRight[center], tri, center}], center] > ] > SubDivide[lst : {__Polygon}] := Flatten[SubDivide /@ lst] > > SubDivide[lst_, n_Integer] := Nest[SubDivide, lst, n] > > ToSphere[{th_?NumericQ, phi_?NumericQ}] := > {Cos[phi]*Sin[th], Sin[phi]*Sin[th], Cos[th]} > ToSphere[Polygon[pnts_]] := Polygon[ToSphere /@ pnts] > ToSphere[lst : {__Polygon}] := ToSphere /@ lst > > and > > With[{nSubdivde = 4}, > Graphics3D[ > {Sphere[{0, 0, 0}, 1], > ToSphere[ > SubDivide[Polygon[{{Pi/3, 0}, {2 Pi/3, 0}, {Pi/3, Pi/3}}], > nSubdivde] ] /. > Polygon[pnts_] :> Line[Append[pnts, First[pnts]]]} > ] > ] > > should give you a triangle on the sphere ... > and > > With[{nSubdivde = 4}, > Graphics3D[ > {Sphere[{0, 0, 0}, 1], > ToSphere[ > SubDivide[Polygon[{{Pi/3, 0}, {2 Pi/3, 0}, {Pi/3, Pi/3}}], > nSubdivde] ,1.1] /. > Polygon[pnts_] :> {Hue[Random[]], Polygon[pnts]}} > ] > ] > > will color the individual polygons > > and > > With[{nSubdivde = 4}, > Graphics3D[ > {Sphere[{0, 0, 0}, 0.975], EdgeForm[], RGBColor[1, 0, 0, 0.5], > ToSphere[ > SubDivide[Polygon[{{Pi/3, 0}, {2 Pi/3, 0}, {Pi/3, Pi/3}}], > nSubdivde] , 1]} > ] > ] > > will draw a transparent red triangle on the sphere. > Be careful when setting the radius of the sphere a bit smaller > than the radius of the triangle, otherwise some parts > of the triangle mesh may be hidden .. > > Regards > Jens > > > > > > Alexander Erlich wrote: >> Hello, >> >> I would like to visualize the a spherical triangle between Bremen >> (Germany), >> Chicago and Shanghai on the world sphere. Although there are some >> notebooks >> on the Documentation Project which deal with spherical triangles, I >> had >> trouble understanding them (being rather new to mathematica), and I >> could >> not find a way to modify any of them to my purpose. >> >> Could you tell me how to visualize a spherical triangle? Or (if >> this is >> easier) how to modify an existing notebook to visualize it? >> >> Regards, >> Alexander >> >> >
- References:
- Re: Visualising a spherical triangle
- From: Jens-Peer Kuska <kuska@informatik.uni-leipzig.de>
- Re: Visualising a spherical triangle