Re: NDSolve[] and Differential Equations: Problem solving two similar
- To: mathgroup at smc.vnet.net
- Subject: [mg85707] Re: NDSolve[] and Differential Equations: Problem solving two similar
- From: dh <dh at metrohm.ch>
- Date: Tue, 19 Feb 2008 07:07:52 -0500 (EST)
- References: <fpdul8$r3l$1@smc.vnet.net>
Hi Gopinath, in your equations there is a function Phi that is not included in the list: bdefmitr of functions to solve for. hope this helps, Daniel Gopinath Venkatesan wrote: > Hello Friends, > > I used NDSolve[] to solve two cases of differential equations, and first set solves with no problem. A similar set did not solve. I defined a variable as a function having two individual arguments for the sake of introducing differentials simply by dash. Like instead of f[x,y], I used f[x][y], so we can define f[x]'[y] for y derivative. I posted below my code, which is lengthy, but I am posting it because it is required to make my question understandable. I might have used lengthy methods (algorithms), etc. > > If you look at the below code (code posted at the bottom of the message), you will notice that the two NDSolve[] as given below, > > NDSolve[{modset[[im]] == 0, ictp1[[im]] == 0, ictp2[[im]] == 0}, > bdefm[[im]], {t, 0, 1 + sep/len}] > > solves with no problem but a similar NDSolve[] as shown below does not. > > NDSolve[{eqn1[[im]] == 0, icon1[[im]] == 0, icon2[[im]] == 0}, > bdefmitr[[im]], {t, 0, 1 + sep/len}] > > Of course, the second equation deals with a set of few dependent differential equations while the first one deals with only one differential equation. > > The initial conditions (2 in the first and 10 in the second case) with respective set of differential equations should solve with no problem. > > If any of could help me figure out the problem, I will be greatly relieved. Please give me a hint on solving such connected differential equations or if possible let me know where I made the mistake or sources of examples solving dependent multiple differential equations. > > Thank you. > > Gopinath Venkatesan > University of Oklahoma > > ****************************** > Mathematica code posted below > ****************************** > > mperl = 2303; > ag = 9.81; > bs = 3.757; > ht = 2.1; > moi = (bs ht^3)/12; > emod = 2.87*10^9; > sep = 8; > pmI = 11515 sep^2; > spload = 508329.675; > fwload = 28240.5375; > rwload = 28240.5375; > d1 = 0.33 sep; > d2 = sep - d1; > load = spload + fwload + rwload; > Print["The total load is ", load]; > tmass = load/ag; > logdampdecbeam = 0.5; > > len = 25; > vel = 30; (* default is 4.778 *) > Tfact = len/vel; > mfact = 1/(2 - sep/len); > \[Beta] = 1/(2 \[Pi]) logdampdecbeam; > dwrf1 = 0.5; > dwrf2 = 0.5; > > deflmid = (2 load len^3)/(\[Pi]^4 emod moi); > > \[Omega][j_] := (j^2 \[Pi]^2)/len^2 Sqrt[(emod moi)/mperl]; > q1 = (fwload + spload d2/sep)/load; > q2 = (rwload + spload d1/sep)/load; > > deflmid1 = q1 deflmid; > deflmid2 = q2 deflmid; > > sK1 = (0.04 \[Omega][1])^2 tmass; > sK2 = (0.04 \[Omega][1])^2 tmass; > \[CapitalOmega][k_] := (k \[Pi])/Tfact; > vfreq = (\[Pi] vel)/len; > w = (\[Pi] vel)/len; (* Remove this parameter later *) > Print["The natural frequency of the beam is ", \[Omega][1]]; > fs1 = 1/(2 \[Pi]) Sqrt[sK1/ > tmass]; (* The reason fs1 is defined like this instead of fs1 = \ > 0.04 \[Omega][1]/(2 \[Pi]) or fs1 = srf1 \[Omega][1]/(2 \[Pi]) is to \ > have flexibility to change sK1 later *) > fs2 = 1/(2 \[Pi]) Sqrt[sK2/tmass]; > > dsK1 = 2 dwrf1 tmass fs1; > dsK2 = 2 dwrf2 tmass fs2; > wK1 = (0.2 \[Omega][ > 1])^2 tmass; (* wK1 is equivalent to parameter Subscript[K, 1] \ > of Fryba's and change 0.2 to effect a change in wrf1 *) > wK2 = (0.2 \[Omega][1])^2 tmass; > > fw1 = 1/(2 \[Pi]) Sqrt[wK1/tmass]; > > fw2 = 1/(2 \[Pi]) Sqrt[wK2/tmass]; > > \[Kappa] = load/(ag mperl len); > \[Kappa]1 = fwload/load; > \[Kappa]2 = rwload/load; > rI = (pmI ag)/(load sep^2); > > \[Alpha] = vfreq/\[Omega][1]; > Print["The speed parameter is ", \[Alpha]]; > srf1 = (2 \[Pi] fs1)/\[Omega][1]; > srf2 = (2 \[Pi] fs2)/\[Omega][1]; > wrf1 = (2 \[Pi] fw1)/\[Omega][1]; > wrf2 = (2 \[Pi] fw2)/\[Omega][1]; > > Print["srf1 equals ", srf1]; > Print["srf2 equals ", srf2]; > Print["wrf1 equals ", wrf1]; > Print["wrf2 equals ", wrf2]; > > Subscript[\[Omega], b] = \[Beta] \[Omega][1]; > \[Omega]jd[j_] := Sqrt[(\[Omega][j])^2 - Subscript[\[Omega], b]^2]; > > dwrf1 = dsK1/(2 tmass fs1); > dwrf2 = dsK2/(2 tmass fs2); > > step = 0; > nmx = 3; > > bdefm = Table[v[im][t], {im, 1, nmx}]; > > bdefm1t = D[bdefm, t]; > bdefm2t = D[bdefm, {t, 2}]; > > ictp1 = Table[bdefm[[im]] /. t -> 0, {im, 1, nmx}]; > ictp2 = Table[1/Tfact bdefm1t[[im]] /. t -> 0, {im, 1, nmx}]; > > > tpld[im_, t_] := > If[0 <= t <= sep/len, 2 q1 Sin[im \[Pi] t], > If[sep/len < t < 1, > 2 q1 Sin[im \[Pi] t] + 2 q2 Sin[im \[Pi] (t - sep/len)], > If[1 <= t <= 1 + sep/len, 2 q2 Sin[im \[Pi] (t - sep/len)], 0]]]; > > modset = Table[\[Pi]^2 \[Alpha]^2 bdefm2t[[im]] + > 2 \[Pi]^3 \[Alpha] \[Beta] bdefm1t[[im]] + > im^4 \[Pi]^4 bdefm[[im]] - 48 tpld[im, t], {im, 1, nmx}]; > > sol1 = Table[ > NDSolve[{modset[[im]] == 0, ictp1[[im]] == 0, ictp2[[im]] == 0}, > bdefm[[im]], {t, 0, 1 + sep/len}], {im, 1, nmx}]; > > bdefmsol1 = Table[Chop[bdefm[[im]] /. sol1[[im]]], {im, 1, nmx}]; > > Plot[bdefmsol1[[1]], {t, 0, 1 + sep/len}] > > bdeftpld[x_] := \!\( > \*UnderoverscriptBox[\(\[Sum]\), \(im = > 1\), \(nmx\)]\((bdefmsol1[\([\)\(im\)\(]\)]\ Sin[ > im\ \[Pi]\ x])\)\); (* this is the beam displacement solution \ > we use to substitute later for iterating the vehicle beam interaction \ > *) > > p1 = Plot[bdeftpld[0.5], {t, 0, 1 + sep/len}] > bdeftpld[x] > bdeftpld[0.5] > > bdeftot[x_] := > Flatten[Table[bdeftpld[x], {t, 0, 1 + sep/len, 0.05}]]; > bdeftot[0.5] > > time = Table[t, {t, 0, 1 + sep/len, 0.05}]; > xlis = Table[xs, {xs, 0, 1, 0.1}]; > gridxt = {xlis, time}; > > bdeftotintp = Table[Chop[bdeftot[x]], {x, 0, 1, 0.1}]; > > func[x_, y_] := > ListInterpolation[bdeftotintp, gridxt, InterpolationOrder -> 3][x, > y]; > > func[0.5, 0.5] > bdeftpld[0.5] /. t -> 0.5 > > definstxt1 = > Table[If[0 <= t <= 1, Chop[func[t, t]], 0], {t, 0, 1 + sep/len, > 0.05}]; > definstxt2 = > Table[If[sep/len <= t <= 1 + sep/len, Chop[func[t - sep/len, t]], > 0], {t, 0, 1 + sep/len, 0.05}]; > Print["The deflection of beam at locations of contact of load 1 and 2 \ > are "]; > definstxt1 // MatrixForm > definstxt2 // MatrixForm > definstxt1itr = definstxt1; > definstxt2itr = definstxt2; > > wdef1itr[t_] := v1[t]; > wdef2itr[t_] := v2[t]; > > (* Start While/Do Loop from here *) > > bdefmitr = Table[vi[im][t], {im, 1, nmx}]; > bdefmitr1t = D[bdefmitr, t]; > bdefmitr2t = D[bdefmitr, {t, 2}]; > Print["bdefmitr is ", bdefmitr]; > Print["bdefmitr1t is ", bdefmitr1t]; > Print["bdefmitr2t is ", bdefmitr2t]; > > icon1 = Table[bdefmitr[[im]] /. t -> 0, {im, 1, nmx}]; > Print["icon1 is ", icon1 // MatrixForm]; > icon2 = Table[1/Tfact bdefmitr1t[[im]] /. t -> 0, {im, 1, nmx}]; > Print["icon2 is ", icon2 // MatrixForm]; > wdef1icon1 = v1[t] /. t -> 0; > wdef1icon2 = D[v1[t], t] /. t -> 0; > wdef2icon1 = v2[t] /. t -> 0; > wdef2icon2 = D[v2[t], t] /. t -> 0; > sdeficon1 = v3[t] /. t -> 0; > sdeficon2 = D[v3[t], t] /. t -> 0; > phicon1 = \[Phi][t] /. t -> 0; > phicon2 = D[\[Phi][t], t] /. t -> 0; > > wnet1[t_] := v3[t] + d1/sep \[Phi][t] - v1[t]; > wnet2[t_] := v3[t] - d2/sep \[Phi][t] - v2[t]; > > Print["Defining the reaction forces"]; > reactP1[t_] := (\[Pi]^4 \[Kappa] wrf1^2)/ > 24 (Chop[wdef1itr[t]] - Chop[func[t, t]]); > > (* See if we are using definstxt that is updating within loop *) > reactP2[t_] := (\[Pi]^4 \[Kappa] wrf2^2)/ > 24 (Chop[wdef2itr[t]] - Chop[func[t - sep/len, t]]); > If[step != 0, > Print["After solution and before setting reaction 1 is ", > reactP1[t] // MatrixForm]; > Print["After solution and before setting, reaction 2 is ", > reactP2[t] // MatrixForm]; > > reactP1[t] = reactP1[t] /. x_?Negative -> 0; > reactP2[t] = reactP2[t] /. x_?Negative -> 0; > > Print["reaction force at load1 is ", reactP1 // MatrixForm]; > Print["reaction force at load 2 position is ", > reactP2 // MatrixForm]]; > > tplditr[im_, t_] := > If[0 <= t < sep/len, reactP1[t] Sin[im \[Pi] t], > If[sep/len <= t <= 1, > reactP1[t] Sin[im \[Pi] t] + > reactP2[t] Sin[im \[Pi] (t - sep/len)], > If[1 < t <= 1 + sep/len, > reactP2[t] Sin[im \[Pi] (t - sep/len)]]]]; > > > phieq = -\[Phi]''[t] - (d1 sK1 Tfact^2)/(sep rI tmass) wnet1[t] - ( > d1 dsK1 Tfact)/(sep rI tmass) wnet1'[t] + (d2 sK2 Tfact^2)/( > sep rI tmass) wnet2[t] + (d2 dsK2 Tfact)/(sep rI tmass) > wnet2'[t]; > > v3eq = (1 - \[Kappa]1 - \[Kappa]2)/Tfact^2 \[Alpha]^2 v3''[t] + > srf1^2 \[Pi]^2 wnet1'[t] + dwrf1 \[Alpha] srf1 wnet1'[t] + > srf2^2 \[Pi]^2 wnet2[t] + dwrf2 \[Alpha] srf2 wnet2'[t]; > > v1eq = v1''[t] - ( > 24 Tfact^2)/(\[Pi]^2 \[Kappa]1 \[Kappa] \[Alpha]^2) (2 q1 + \ > (\[Pi]^4 \[Kappa] srf1^2 wnet1[t])/ > 24 + (\[Pi]^2 dwrf1 srf1 \[Kappa] \[Alpha] wnet1'[t])/24 - > reactP1[t]); > > v2eq = v2''[t] - ( > 24 Tfact^2)/(\[Pi]^2 \[Kappa]2 \[Kappa] \[Alpha]^2) (2 q2 + \ > (\[Pi]^4 \[Kappa] srf2^2 wnet2[t])/ > 24 + (\[Pi]^2 dwrf2 srf2 \[Kappa] \[Alpha] wnet2'[t])/24 - > reactP2[t]); > > > modsetitr = > Table[\[Pi]^2 \[Alpha]^2 bdefmitr2t[[im]] + > 2 \[Pi]^3 \[Alpha] \[Beta] bdefmitr1t[[im]] + > im^4 \[Pi]^4 bdefmitr[[im]] - 48 tplditr[im, t], {im, 1, nmx}]; > modsetitr // MatrixForm > > eqn1 = Table[ > Flatten[{wdef1icon1, wdef1icon2, wdef2icon1, wdef2icon2, sdeficon1, > sdeficon2, phicon1, phicon2, phieq, v3eq, v1eq, v2eq, > modsetitr[[im]]}], {im, 1, nmx}]; > > Print["Solving the set of equations"]; > solnitr1 = > Table[NDSolve[{eqn1[[im]] == 0, icon1[[im]] == 0, icon2[[im]] == 0}, > bdefmitr[[im]], {t, 0, 1 + sep/len}], {im, 1, nmx}]; > > sol1itr1[[1]] // MatrixForm > > *************************** > END HERE > *************************** >