Re: NIntegrate HypergeometricU
- To: mathgroup at smc.vnet.net
- Subject: [mg84849] Re: NIntegrate HypergeometricU
- From: sashap <pavlyk at gmail.com>
- Date: Wed, 16 Jan 2008 23:01:41 -0500 (EST)
- References: <fmkf3a$9fg$1@smc.vnet.net>
On Jan 16, 2:26 am, "subo_... at yahoo.com" <subodh... at gmail.com> wrote: > I am trying to NIntegrate the function HypergeometricU[a,b,z] with > a>=1, b>=1,z=R/sin[x]^2 where integration is from 0 to Pi/2. For lower > values of R this gives answers and for Higher values of R this is > giving errors . You could avoid using NIntegrate altogether, by finding the integral exactly. Do the substitution Sin[t]^2 = x, and then it reduces to Integrate[ HypergeometricU[a, b, R/x] (2 Sqrt[x] Sqrt[1 - x]), {x, 0, 1}, Assumptions -> R > 0 && a > 1 && b > 1] which gives a complicated expansion of hypergeometric functions that disguises res[a_,b_,R_] := Sqrt[Pi]/(Gamma[a] Gamma[a + 1 - b]) MeijerG[{{1 - a}, {3}}, {{3/2, 0, 1 - b}, {}}, R] This result is correct under your assumptions (a>=1, b>=1 and R>0) provided a+1-b is not a non-negative integer. The answer admits the limit at this point. Let b = a + n + 1. Then Table[HypergeometricU[a, a + n + 1, R/x] == Sum[Binomial[n, n - k] Pochhammer[a, k] (x/R)^(k + a), {k, 0, n}], {n, 0, 5}] // Simplify[#, x > 0 && R > 0] & Using this definition Integrate[ HypergeometricU[a, a+n+1, R/x] (2 Sqrt[x] Sqrt[1 - x]), {x, 0, 1}, Assumptions -> R > 0 && a > 1 && n > 0] == (Sqrt[Pi]*(1/R)^a*Gamma[3/2 + a]* HypergeometricPFQ[{a, 3/2 + a, -n}, {3 + a}, -(1/R)])/Gamma[3 + a] Indeed: In[141]:= Sum[ Binomial[n, n - k]*Pochhammer[a, k]* Integrate[(x/R)^(a + k)*2*Sqrt[x]*Sqrt[1 - x], {x, 0, 1}, Assumptions -> a >= 1 && k > 0], {k, 0, n}] Out[141]= (Sqrt[Pi]*(1/R)^a*Gamma[3/2 + a]* HypergeometricPFQ[{a, 3/2 + a, -n}, {3 + a}, -(1/R)])/Gamma[3 + a] Hope this helps, Oleksandr Pavlyk Special Functions Developer Wolfram Research Inc > > \!\(NIntegrate::"singd" \(\(:\)\(\ \)\) "NIntegrate's singularity > handling > has failed at point \ > \!\({x}\)=\!\({8.145014137541`5.15492657977389*^-15}\) for the > specified \ > precision goal. Try using larger values for any of $MaxExtraPrecision > or the \ > options WorkingPrecision, or SingularityDepth and MaxRecursion"\) > > Even though I change the working precisio,SingularityDepth and > MaxRecursion it is not helping me much. Please advice me how to solve > this problem. > > Subodha