Re: NIntegrate HypergeometricU
- To: mathgroup at smc.vnet.net
- Subject: [mg84867] Re: NIntegrate HypergeometricU
- From: "David W.Cantrell" <DWCantrell at sigmaxi.net>
- Date: Wed, 16 Jan 2008 23:10:54 -0500 (EST)
- References: <fmkf3a$9fg$1@smc.vnet.net>
"subo_dha at yahoo.com" <subodha.g at gmail.com> wrote: > I am trying to NIntegrate the function HypergeometricU[a,b,z] with > a>=1, b>=1,z=R/sin[x]^2 where integration is from 0 to Pi/2. For lower > values of R this gives answers and for Higher values of R this is > giving errors . > > \!\(NIntegrate::"singd" \(\(:\)\(\ \)\) "NIntegrate's singularity > handling > has failed at point \ > \!\({x}\)=\!\({8.145014137541`5.15492657977389*^-15}\) for the > specified \ > precision goal. Try using larger values for any of $MaxExtraPrecision > or the \ > options WorkingPrecision, or SingularityDepth and MaxRecursion"\) > > Even though I change the working precisio,SingularityDepth and > MaxRecursion it is not helping me much. Please advice me how to solve > this problem. I suggest an alternative approach. Although Mathematica cannnot calculate a symbolic result for your definite integral with respect to x, it succeeds if we help it by making the simple substitution u = Sin[x]. Your integral then becomes In[8]:= Integrate[HypergeometricU[a, b, r/u^2]/Sqrt[1 - u^2], {u, 0, 1}] Out[8]= If[Re[a] > -(1/2), (1/2)*Sqrt[Pi]*((Sqrt[Pi]*Gamma[1 - b])/Gamma[1 + a - b] - (2*Gamma[1/2 + a]*Gamma[1/2 - b]*HypergeometricPFQ[{1/2, 1/2 + a}, {3/2, 1/2 + b}, r])/(Sqrt[1/r]*Gamma[a]*Gamma[1 + a - b]) + ((1/r)^(-1 + b)*Gamma[-(1/2) + b]*HypergeometricPFQ[{1 - b, 1 + a - b}, {3/2 - b, 2 - b}, r])/((-1 + b)*Gamma[a])), Integrate[HypergeometricU[a, b, r/u^2]/Sqrt[1 - u^2], {u, 0, 1}, Assumptions -> Re[a] <= -(1/2)]] In[9]:= sol = FullSimplify[%, a >= 1 && b >= 1 && r > 0] Out[9]= (Pi*(2*Gamma[a]*Gamma[1 - b] - 4^b*r^(1 - b)*Gamma[2 - 2*b]*Gamma[1 + a - b]*Gamma[-(1/2) + b]*HypergeometricPFQRegularized[{1 - b, 1 + a - b}, {3/2 - b, 2 - b}, r] - 2*Pi*Sqrt[r]*Gamma[1/2 + a]*HypergeometricPFQRegularized[{1/2, 1/2 + a}, {3/2, 1/2 + b}, r]*Sec[b*Pi]))/(4*Gamma[a]*Gamma[1 + a - b]) I suspect that that result is basically correct. However, at least two cautions should be noted. Caution 1: Numerical evaluation of sol may require care. For example, In[15]:= N[sol /. {a -> 2, b -> 5/3, r -> 100}] Out[15]= -7.06858 is misleading. Instead, use In[16]:= N[sol /. {a -> 2, b -> 5/3, r -> 100}, 12] Out[16]= 0.0000576344250174 Caution 2: For some values of the parameters (integers and integers+1/2, I think), sol is Indeterminate, even though your integral is well defined. For example, In[17]:= sol /. {a -> 2, b -> 3, r -> 2} During evaluation of In[17]:= \[Infinity]::indet: Indeterminate \ expression 0/4 3 Sqrt[\[Pi]] ComplexInfinity ComplexInfinity \ encountered. >> Out[17]= Indeterminate although In[18]:= NIntegrate[ HypergeometricU[a, b, r/Sin[x]^2] /. {a -> 2, b -> 3, r -> 2}, {x,0,Pi/2}] Out[18]= 0.147262 You might wish to compare that with In[19]:= N[sol /. {a -> 2, b -> 2999/1000, r -> 2}, 12] Out[19]= 0.147180371332 In[20]:= N[sol /. {a -> 2, b -> 3001/1000, r -> 2}, 12] Out[20]= 0.147343999426 I suspect that Mathematica might not be able to simplify Limit[sol /. {a -> 2, r -> 2}, b -> 3], but I'm not sure because I stopped waiting for a result. David W. Cantrell