Re: Possible Bug in Mathematica 6
- To: mathgroup at smc.vnet.net
- Subject: [mg90240] Re: [mg90184] Possible Bug in Mathematica 6
- From: DrMajorBob <drmajorbob at att.net>
- Date: Thu, 3 Jul 2008 06:10:55 -0400 (EDT)
- References: <19823722.1215015456847.JavaMail.root@m08>
- Reply-to: drmajorbob at longhorns.com
I'm curious how you used Det on a 6-by-9 (non-square) matrix: m = {{f_ 11, f_ 12, f_ 13, 0, 0, 0, 0, 0, 0}, {0, 0, 0, f_ 21, f_ 22, f_ 23, 0, 0, 0}, {0, 0, 0, 0, 0, 0, (a f_ 11 + b f_ 21), (a f_ 12 + b f_ 22), (a f_ 13 + b f_ 23)}, {f_ 21, f_ 22, f_ 23, f_ 11, f_ 12, f_ 13, 0, 0, 0}, {(a f_ 11 + b f_ 21), (a f_ 12 + b f_ 22), (a f_ 13 + b f_ 23), 0, 0, 0, f_ 11, f_ 12, f_ 13}, {0, 0, 0, (a f_ 11 + b f_ 21), (a f_ 12 + b f_ 22), (a f_ 13 + b f_ 23), f_ 21, f_ 22, f_ 23}}; Dimensions@m {6, 9} RowReduce@m {{1, 0, -1, 0, 0, 0, 0, 12/(11 a + 21 b), 24/(11 a + 21 b)}, {0, 1, 2, 0, 0, 0, 0, -(11/(11 a + 21 b)), -(22/(11 a + 21 b))}, {0, 0, 0, 1, 0, -1, 0, 22/(11 a + 21 b), 44/(11 a + 21 b)}, {0, 0, 0, 0, 1, 2, 0, -(21/(11 a + 21 b)), -(42/(11 a + 21 b))}, {0, 0, 0, 0, 0, 0, 1, (2 (6 a + 11 b))/(11 a + 21 b), (13 a + 23 b)/(11 a + 21 b)}, {0, 0, 0, 0, 0, 0, 0, 0, 0}} (5 independent rows.) RowReduce@Transpose@m {{1, 0, 0, 0, 0, a^2/b}, {0, 1, 0, 0, 0, b}, {0, 0, 1, 0, 0, 1/b}, {0, 0, 0, 1, 0, a}, {0, 0, 0, 0, 1, -(a/b)}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}} (5 independent columns.) MatrixRank@m 5 (Rank 5.) I don't see a problem. Bobby On Tue, 01 Jul 2008 06:02:57 -0500, Amir Ahmed Ansari <aansari at softpak.com> wrote: > Hi, > > I tried this on a friend=92s computer using Mathematica 6. Consider the > following matrix: > > { > { f_11, f_12, f_13, 0, 0, 0, 0, 0, 0 }, > { 0, 0, 0, f_21, f_22, f_23, 0, 0, 0 }, > { 0, 0, 0, 0, 0, 0, ( a f_11 + b f_21 ), ( a f_12 + b f_22 ), = > ( a f_13 + > b f_23 ) }, > { f_21, f_22, f_23, f_11, f_12, f_13, 0, 0, 0 }, > { ( a f_11 + b f_21 ), ( a f_12 + b f_22 ), ( a f_13 + b f_23 = > ), 0, 0, > 0, f_11, f_12, f_13 }, > { 0, 0, 0, ( a f_11 + b f_21 ), ( a f_12 + b f_22 ), ( a f_13 = > + b f_23 > ), f_21, f_22, f_23 } > } > > > All 5x5 have a determinant of 0 as can be seen by using Det[]. Yet, > MatrixRank[] comes out to be 5. Is this a bug or am I doing something > stupid? > > > > -- DrMajorBob at longhorns.com