Re: Possible Bug in Mathematica 6
- To: mathgroup at smc.vnet.net
- Subject: [mg90241] Re: [mg90184] Possible Bug in Mathematica 6
- From: DrMajorBob <drmajorbob at att.net>
- Date: Thu, 3 Jul 2008 06:11:06 -0400 (EDT)
- References: <19823722.1215015456847.JavaMail.root@m08>
- Reply-to: drmajorbob at longhorns.com
Without the Blanks, results are similar: m = {{f11, f12, f13, 0, 0, 0, 0, 0, 0}, {0, 0, 0, f21, f22, f23, 0, 0, 0}, {0, 0, 0, 0, 0, 0, (a f11 + b f21), (a f12 + b f22), (a f13 + b f23)}, {f21, f22, f23, f11, f12, f13, 0, 0, 0}, {(a f11 + b f21), (a f12 + b f22), (a f13 + b f23), 0, 0, 0, f11, f12, f13}, {0, 0, 0, (a f11 + b f21), (a f12 + b f22), (a f13 + b f23), f21, f22, f23}}; Dimensions@m {6, 9} RowReduce@m {{1, 0, (f13 f22 - f12 f23)/(-f12 f21 + f11 f22), 0, 0, 0, 0, f12/( a f11 + b f21), ( f12 (-f13 f21 + f11 f23))/((a f11 + b f21) (-f12 f21 + f11 f22))}, {0, 1, (f13 f21 - f11 f23)/(f12 f21 - f11 f22), 0, 0, 0, 0, -(f11/(a f11 + b f21)), ( f11 f13 f21 - f11^2 f23)/((a f11 + b f21) (-f12 f21 + f11 f22))}, {0, 0, 0, 1, 0, (-f13 f22 + f12 f23)/(f12 f21 - f11 f22), 0, f22/( a f11 + b f21), -(( f22 (f13 f21 - f11 f23))/((a f11 + b f21) (-f12 f21 + f11 f22)))}, {0, 0, 0, 0, 1, (f13 f21 - f11 f23)/( f12 f21 - f11 f22), 0, -(f21/(a f11 + b f21)), (-f13 f21^2 + f11 f21 f23)/((a f11 + b f21) (f12 f21 - f11 f22))}, {0, 0, 0, 0, 0, 0, 1, (a f12 + b f22)/(a f11 + b f21), (a f13 + b f23)/( a f11 + b f21)}, {0, 0, 0, 0, 0, 0, 0, 0, 0}} RowReduce@Transpose@m {{1, 0, 0, 0, 0, a^2/b}, {0, 1, 0, 0, 0, b}, {0, 0, 1, 0, 0, 1/b}, {0, 0, 0, 1, 0, a}, {0, 0, 0, 0, 1, -(a/b)}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}} MatrixRank@m 5 Bobby On Wed, 02 Jul 2008 13:43:22 -0500, DrMajorBob <drmajorbob at att.net> wrote: > I'm curious how you used Det on a 6-by-9 (non-square) matrix: > > m = {{f_ 11, f_ 12, f_ 13, 0, 0, 0, 0, 0, 0}, {0, 0, 0, f_ 21, f_ 22, > f_ 23, 0, 0, 0}, {0, 0, 0, 0, 0, > 0, (a f_ 11 + b f_ 21), (a f_ 12 + b f_ 22), (a f_ 13 + > b f_ 23)}, {f_ 21, f_ 22, f_ 23, f_ 11, f_ 12, f_ 13, 0, 0, > 0}, {(a f_ 11 + b f_ 21), (a f_ 12 + b f_ 22), (a f_ 13 + > b f_ 23), 0, 0, 0, f_ 11, f_ 12, f_ 13}, {0, 0, > 0, (a f_ 11 + b f_ 21), (a f_ 12 + b f_ 22), (a f_ 13 + b f_ 23), > f_ 21, f_ 22, f_ 23}}; > > Dimensions@m > > {6, 9} > > RowReduce@m > > {{1, 0, -1, 0, 0, 0, 0, 12/(11 a + 21 b), 24/(11 a + 21 b)}, {0, 1, 2, > 0, 0, 0, 0, -(11/(11 a + 21 b)), -(22/(11 a + 21 b))}, {0, 0, 0, 1, > 0, -1, 0, 22/(11 a + 21 b), 44/(11 a + 21 b)}, {0, 0, 0, 0, 1, 2, > 0, -(21/(11 a + 21 b)), -(42/(11 a + 21 b))}, {0, 0, 0, 0, 0, 0, > 1, (2 (6 a + 11 b))/(11 a + 21 b), (13 a + 23 b)/(11 a + 21 b)}, {0, > 0, 0, 0, 0, 0, 0, 0, 0}} > > (5 independent rows.) > > RowReduce@Transpose@m > > {{1, 0, 0, 0, 0, a^2/b}, {0, 1, 0, 0, 0, b}, {0, 0, 1, 0, 0, 1/b}, {0, > 0, 0, 1, 0, a}, {0, 0, 0, 0, 1, -(a/b)}, {0, 0, 0, 0, 0, 0}, {0, 0, > 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0}} > > (5 independent columns.) > > MatrixRank@m > > 5 > > (Rank 5.) > > I don't see a problem. > > Bobby > > On Tue, 01 Jul 2008 06:02:57 -0500, Amir Ahmed Ansari > <aansari at softpak.com> wrote: > >> Hi, >> >> I tried this on a friend=92s computer using Mathematica 6. Consider the >> following matrix: >> >> { >> { f_11, f_12, f_13, 0, 0, 0, 0, 0, 0 }, >> { 0, 0, 0, f_21, f_22, f_23, 0, 0, 0 }, >> { 0, 0, 0, 0, 0, 0, ( a f_11 + b f_21 ), ( a f_12 + b f_22 ), = >> ( a f_13 + >> b f_23 ) }, >> { f_21, f_22, f_23, f_11, f_12, f_13, 0, 0, 0 }, >> { ( a f_11 + b f_21 ), ( a f_12 + b f_22 ), ( a f_13 + b f_23 = >> ), 0, 0, >> 0, f_11, f_12, f_13 }, >> { 0, 0, 0, ( a f_11 + b f_21 ), ( a f_12 + b f_22 ), ( a f_13 = >> + b f_23 >> ), f_21, f_22, f_23 } >> } >> >> >> All 5x5 have a determinant of 0 as can be seen by using Det[]. Yet, >> MatrixRank[] comes out to be 5. Is this a bug or am I doing something >> stupid? >> >> >> >> > > > -- DrMajorBob at longhorns.com