       Re: simplifying definite vs indefinite integrals

• To: mathgroup at smc.vnet.net
• Subject: [mg90661] Re: simplifying definite vs indefinite integrals
• From: "David Park" <djmpark at comcast.net>
• Date: Fri, 18 Jul 2008 04:01:54 -0400 (EDT)
• References: <g5n464\$sbm\$1@smc.vnet.net>

```Rik,

It is strange that Mathematica factors out a[x] in one case and not in the
other.

In any case, the Student's Integral section of the Presentations package
allows a user to manipulate an unevaluated integral (operating on the
integrand, doing a change of variable, using integration by parts, using a
trigonometric substitution, and breaking out sums and nondependent factors)
before submitting the integral either to an integral table or to the regular
Mathematica Integrate. It uses integrate with a small i. So:

Needs["Presentations`Master`"]

integrate[a[x] b[y], {y, s, t}]
% // BreakoutIntegral

\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[y]\)
\[DifferentialD]y\)\)
a[x] \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(b[y]
\[DifferentialD]y\)\)

Or if you want to do your 'hand factoring' method you could use:

integrate[a[x] b[y], {y, s, t}]
a[x] % // OperateIntegrand[#/a[x] &]

\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[y]\)
\[DifferentialD]y\)\)
a[x] \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(b[y]
\[DifferentialD]y\)\)

--
David Park
djmpark at comcast.net
http://home.comcast.net/~djmpark/

<rikblok at gmail.com> wrote in message news:g5n464\$sbm\$1 at smc.vnet.net...
> Hi Mathematica gurus (& sorry if this is a dupe post),
>
> I'm new to Mathematica and I was surprised to see that it handles
> definite versus indefinite integrals differently. For example:
>
> In:= indef = Integrate[a[x] b[y], y]
>
> Out= a[x] \[Integral]b[y] \[DifferentialD]y
>
> Nice.  a[x] gets pulled out of the integral.
>
> In:= def = Integrate[a[x] b[y], {y, s, t}]
>
> Out= \!\(
> \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[
>    y]\) \[DifferentialD]y\)\)
>
> But not for the definite integral.  Why?  And how can I make it factor
> out?
>
> In:= Collect[def, a[x]]
>
> Out= \!\(
> \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[
>    y]\) \[DifferentialD]y\)\)
>
> doesn't work. Nor does
>
> In:= Simplify[def]
>
> Out= \!\(
> \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[
>    y]\) \[DifferentialD]y\)\)
>
> I can't even remove a[x] manually:
>
> In:= FullSimplify[def/a[x]]
>
> Out= \!\(
> \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[
>    y]\) \[DifferentialD]y\)\)/a[x]
>
> Suggestions?  Thanks for your help!
>
> Rik
>

```

• Prev by Date: Re: Re: Collapsing cell groups [was: Mathematica
• Next by Date: Re: parametric plot extremely slow
• Previous by thread: Re: simplifying definite vs indefinite integrals
• Next by thread: Re: simplifying definite vs indefinite integrals