Re: simplifying definite vs indefinite integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg90661] Re: simplifying definite vs indefinite integrals
- From: "David Park" <djmpark at comcast.net>
- Date: Fri, 18 Jul 2008 04:01:54 -0400 (EDT)
- References: <g5n464$sbm$1@smc.vnet.net>
Rik, It is strange that Mathematica factors out a[x] in one case and not in the other. In any case, the Student's Integral section of the Presentations package allows a user to manipulate an unevaluated integral (operating on the integrand, doing a change of variable, using integration by parts, using a trigonometric substitution, and breaking out sums and nondependent factors) before submitting the integral either to an integral table or to the regular Mathematica Integrate. It uses integrate with a small i. So: Needs["Presentations`Master`"] integrate[a[x] b[y], {y, s, t}] % // BreakoutIntegral \!\( \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[y]\) \[DifferentialD]y\)\) a[x] \!\( \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(b[y] \[DifferentialD]y\)\) Or if you want to do your 'hand factoring' method you could use: integrate[a[x] b[y], {y, s, t}] a[x] % // OperateIntegrand[#/a[x] &] \!\( \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[y]\) \[DifferentialD]y\)\) a[x] \!\( \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(b[y] \[DifferentialD]y\)\) -- David Park djmpark at comcast.net http://home.comcast.net/~djmpark/ <rikblok at gmail.com> wrote in message news:g5n464$sbm$1 at smc.vnet.net... > Hi Mathematica gurus (& sorry if this is a dupe post), > > I'm new to Mathematica and I was surprised to see that it handles > definite versus indefinite integrals differently. For example: > > In[1]:= indef = Integrate[a[x] b[y], y] > > Out[1]= a[x] \[Integral]b[y] \[DifferentialD]y > > Nice. a[x] gets pulled out of the integral. > > In[2]:= def = Integrate[a[x] b[y], {y, s, t}] > > Out[2]= \!\( > \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[ > y]\) \[DifferentialD]y\)\) > > But not for the definite integral. Why? And how can I make it factor > out? > > In[3]:= Collect[def, a[x]] > > Out[3]= \!\( > \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[ > y]\) \[DifferentialD]y\)\) > > doesn't work. Nor does > > In[4]:= Simplify[def] > > Out[4]= \!\( > \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[ > y]\) \[DifferentialD]y\)\) > > I can't even remove a[x] manually: > > In[5]:= FullSimplify[def/a[x]] > > Out[5]= \!\( > \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[ > y]\) \[DifferentialD]y\)\)/a[x] > > Suggestions? Thanks for your help! > > Rik >