Re: simplifying definite vs indefinite integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg90689] Re: simplifying definite vs indefinite integrals
- From: Rik Blok <rikblok at gmail.com>
- Date: Sat, 19 Jul 2008 04:50:38 -0400 (EDT)
- References: <g5n464$sbm$1@smc.vnet.net> <g5piu6$qab$1@smc.vnet.net>
Thanks Jens! With a ReplaceRepeated it works great, even for more complicated expressions! In[131]:= ruleFactorDefInt = Integrate[a_*b_, {x_, x0_, x1_}] /; FreeQ[a, x] :> a*Integrate[b, {x, x0, x1}]; In[132]:= Integrate[ a[x]^2 b[y] c[x] / Sqrt[d[x] + 1] e[y], {y, s, t}] //. ruleFactorDefInt Out[132]= (a[x]^2 c[x] \!\( \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(b[y]\ e[ y]\) \[DifferentialD]y\)\))/Sqrt[1 + d[x]] Now I'm off to learn *why* it works... Cheers, Rik On Jul 18, 1:06 am, Jens-Peer Kuska <ku... at informatik.uni-leipzig.de> wrote: > Hi, > > Integrate[a[x] b[y], {y, s, t}] /. > Integrate[a_*b_, {x_, x0_, x1_}] /; FreeQ[a, x] :> > a*Integrate[b, {x, x0, x1}] > > ?? > > Regards > Jens > > rikb... at gmail.com wrote: > > Hi Mathematica gurus (& sorry if this is a dupe post), > > > I'm new to Mathematica and I was surprised to see that it handles > > definite versus indefinite integrals differently. For example: > > > In[1]:= indef = Integrate[a[x] b[y], y] > > > Out[1]= a[x] \[Integral]b[y] \[DifferentialD]y > > > Nice. a[x] gets pulled out of the integral. > > > In[2]:= def = Integrate[a[x] b[y], {y, s, t}] > > > Out[2]= \!\( > > \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[ > > y]\) \[DifferentialD]y\)\) > > > But not for the definite integral. Why? And how can I make it fac= tor > > out? > > > In[3]:= Collect[def, a[x]] > > > Out[3]= \!\( > > \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[ > > y]\) \[DifferentialD]y\)\) > > > doesn't work. Nor does > > > In[4]:= Simplify[def] > > > Out[4]= \!\( > > \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[ > > y]\) \[DifferentialD]y\)\) > > > I can't even remove a[x] manually: > > > In[5]:= FullSimplify[def/a[x]] > > > Out[5]= \!\( > > \*SubsuperscriptBox[\(\[Integral]\), \(s\), \(t\)]\(\(a[x]\ b[ > > y]\) \[DifferentialD]y\)\)/a[x] > > > Suggestions? Thanks for your help! > > > Rik