Re: Re: Solve[] doesn't
- To: mathgroup at smc.vnet.net
- Subject: [mg90655] Re: [mg90636] Re: Solve[] doesn't
- From: DrMajorBob <drmajorbob at att.net>
- Date: Fri, 18 Jul 2008 04:00:46 -0400 (EDT)
- References: <g5kil1$8lf$1@smc.vnet.net>
- Reply-to: drmajorbob at longhorns.com
> (* Now solve for sijkl - if you dare! *) In what equation(s)? In terms of what other variables or constants? Bobby On Thu, 17 Jul 2008 04:34:27 -0500, Hauke Reddmann <fc3a501 at uni-hamburg.de> wrote: > Addendum - "Faked Example" of course means exactly that - > my problem looks *like* the one I gave (of course > Mathematica solves THAT :-) in general structure. > It's hard to come up with actual code because I work > "on the fly" and so I won't exclude sheer stupidity > or a typo on my side. > > I can give my basic code, though, it's just state model > knot theory work: > > ClearAll["Global`*"]; > (*Set Dimension*) n=3;fl=Floor[n/2];ce=Floor[(n-1)/2]; > (*Define Closure*) cl[x_]:=Simplify[pc.x.qc/oo]; > (*Define Convert1*) mt[x_]:=Nest[Partition[#,n]&,Flatten[x],3]; > (*Define Convert2*) tm[x_]:=Partition[Flatten[x],n*n]; > (*Define Rotation*) ro[x_]:=tm[Transpose[p.mt[x].q,{3,1,4,2}]]; > (*Define Tidy Up*) > ti[x_]:=x//Flatten//Together//Numerator//Factor//Sort//Union; > > (*Actual Example*) > (*Set Cup and Cap*) q={{1/2,1,1},{-1,-1,0},{1,0,0}}; > p=Inverse[q]; > (*Set S Matrix *) s={ > {s1111,s1112,s1113,s1121,s1122,s1123,s1131,s1132,s1133}, > {s1211,s1212,s1213,s1221,s1222,s1223,s1231,s1232,s1233}, > {s1311,s1312,s1313,s1321,s1322,s1323,s1331,s1332,s1333}, > {s2111,s2112,s2113,s2121,s2122,s2123,s2131,s2132,s2133}, > {s2211,s2212,s2213,s2221,s2222,s2223,s2231,s2232,s2233}, > {s2311,s2312,s2313,s2321,s2322,s2323,s2331,s2332,s2333}, > {s3111,s3112,s3113,s3121,s3122,s3123,s3131,s3132,s3133}, > {s3211,s3212,s3213,s3221,s3222,s3223,s3231,s3232,s3233}, > {s3311,s3312,s3313,s3321,s3322,s3323,s3331,s3332,s3333}}; > > (*Define R Matrix via Whirl 1*) r=ro[s]; > (*Whirl 2*) nul1=Flatten[s-ro[r]]; > (*Cap as Vector*) pc=Flatten[p]; > (*Cup as Vector*) qc=Flatten[q]; > (*Twist*) nul2a=Flatten[pc.s-pc*f]; > (*Twist*) nul2b=Flatten[pc.r-pc/f]; > (*Id*) kr=IdentityMatrix[n^2]; > (*Poke*) nul3=Flatten[s.r-kr]; > (*Id*) id=IdentityMatrix[n]; > (*S x Id*) > s1=Partition[Flatten[Transpose[Outer[Times,s,id],{1,3,2,4}]],n^3]; > (*Id x S*) > s2=Partition[Flatten[Transpose[Outer[Times,id,s],{1,3,2,4}]],n^3]; > (*Slide*) nul4=Flatten[s1.s2.s1-s2.s1.s2]; > > (* Now solve for sijkl - if you dare! *) > (* nul1 and nul2a/b are linear, try them first. *) > > g=(Sqrt[5]+1)/2; > f=I*(2*g+1); > S=I*{ > {g-1,0,-g/2,0,g/2,g/2,-g/2,-g/2,-g/4}, > {0,g-1,-g,0,g,g,-g,-g,-g/2}, > {0,0,-1,0,g,g,-g,-g,-g/2}, > {0,0,g,g-1,-g,-g,g,g,g/2}, > {0,0,g,0,-1,-g,g,g,g/2}, > {0,0,0,0,0,g-1,0,0,0}, > {0,0,-g,0,g,g,-1,-g,-g/2}, > {0,0,0,0,0,0,0,g-1,0}, > {0,0,0,0,0,0,0,0,g-1}}; > (* s=S is a solution I know but sometimes not find. *) > > HTH. > -- > Hauke Reddmann <:-EX8 fc3a501 at uni-hamburg.de > Er-a svo gott sem gott kveða > öl alda sonum, því að færra veit > er fleira drekkur síns til geðs gumi. > > -- DrMajorBob at longhorns.com