Services & Resources / Wolfram Forums / MathGroup Archive

MathGroup Archive 2008

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Solve[] doesn't

  • To: mathgroup at
  • Subject: [mg90636] Re: Solve[] doesn't
  • From: Hauke Reddmann <fc3a501 at>
  • Date: Thu, 17 Jul 2008 05:34:27 -0400 (EDT)
  • References: <g5kil1$8lf$>

Addendum - "Faked Example" of course means exactly that -
my problem looks *like* the one I gave (of course 
Mathematica solves THAT :-) in general structure.
It's hard to come up with actual code because I work
"on the fly" and so I won't exclude sheer stupidity
or a typo on my side. 

I can give my basic code, though, it's just state model
knot theory work:

(*Set Dimension*) n=3;fl=Floor[n/2];ce=Floor[(n-1)/2];
(*Define Closure*) cl[x_]:=Simplify[pc.x.qc/oo];
(*Define Convert1*) mt[x_]:=Nest[Partition[#,n]&,Flatten[x],3];
(*Define Convert2*) tm[x_]:=Partition[Flatten[x],n*n];
(*Define Rotation*) ro[x_]:=tm[Transpose[[x].q,{3,1,4,2}]];
(*Define Tidy Up*) ti[x_]:=x//Flatten//Together//Numerator//Factor//Sort//Union;

(*Actual Example*)
(*Set Cup and Cap*) q={{1/2,1,1},{-1,-1,0},{1,0,0}};
(*Set S Matrix *) s={

(*Define R Matrix via Whirl 1*) r=ro[s];
(*Whirl 2*) nul1=Flatten[s-ro[r]];
(*Cap as Vector*) pc=Flatten[p];
(*Cup as Vector*) qc=Flatten[q];
(*Twist*) nul2a=Flatten[pc.s-pc*f];
(*Twist*) nul2b=Flatten[pc.r-pc/f];
(*Id*) kr=IdentityMatrix[n^2];
(*Poke*) nul3=Flatten[s.r-kr];
(*Id*) id=IdentityMatrix[n];
(*S x Id*) s1=Partition[Flatten[Transpose[Outer[Times,s,id],{1,3,2,4}]],n^3];
(*Id x S*) s2=Partition[Flatten[Transpose[Outer[Times,id,s],{1,3,2,4}]],n^3];
(*Slide*) nul4=Flatten[s1.s2.s1-s2.s1.s2];

(* Now solve for sijkl - if you dare! *)
(* nul1 and nul2a/b are linear, try them first. *) 

(* s=S is a solution I know but sometimes not find. *)

Hauke Reddmann <:-EX8    fc3a501 at
    Er-a svo gott     sem gott kveða 
    öl alda sonum,     því að færra veit 
    er fleira drekkur     síns til geðs gumi.

  • Prev by Date: Re: Labeled Plot not a Plot?
  • Next by Date: simplifying definite vs indefinite integrals
  • Previous by thread: Re: Solve[] doesn't
  • Next by thread: Re: Re: Solve[] doesn't