Re: Solve[] doesn't
- To: mathgroup at smc.vnet.net
- Subject: [mg90636] Re: Solve[] doesn't
- From: Hauke Reddmann <fc3a501 at uni-hamburg.de>
- Date: Thu, 17 Jul 2008 05:34:27 -0400 (EDT)
- References: <g5kil1$8lf$1@smc.vnet.net>
Addendum - "Faked Example" of course means exactly that - my problem looks *like* the one I gave (of course Mathematica solves THAT :-) in general structure. It's hard to come up with actual code because I work "on the fly" and so I won't exclude sheer stupidity or a typo on my side. I can give my basic code, though, it's just state model knot theory work: ClearAll["Global`*"]; (*Set Dimension*) n=3;fl=Floor[n/2];ce=Floor[(n-1)/2]; (*Define Closure*) cl[x_]:=Simplify[pc.x.qc/oo]; (*Define Convert1*) mt[x_]:=Nest[Partition[#,n]&,Flatten[x],3]; (*Define Convert2*) tm[x_]:=Partition[Flatten[x],n*n]; (*Define Rotation*) ro[x_]:=tm[Transpose[p.mt[x].q,{3,1,4,2}]]; (*Define Tidy Up*) ti[x_]:=x//Flatten//Together//Numerator//Factor//Sort//Union; (*Actual Example*) (*Set Cup and Cap*) q={{1/2,1,1},{-1,-1,0},{1,0,0}}; p=Inverse[q]; (*Set S Matrix *) s={ {s1111,s1112,s1113,s1121,s1122,s1123,s1131,s1132,s1133}, {s1211,s1212,s1213,s1221,s1222,s1223,s1231,s1232,s1233}, {s1311,s1312,s1313,s1321,s1322,s1323,s1331,s1332,s1333}, {s2111,s2112,s2113,s2121,s2122,s2123,s2131,s2132,s2133}, {s2211,s2212,s2213,s2221,s2222,s2223,s2231,s2232,s2233}, {s2311,s2312,s2313,s2321,s2322,s2323,s2331,s2332,s2333}, {s3111,s3112,s3113,s3121,s3122,s3123,s3131,s3132,s3133}, {s3211,s3212,s3213,s3221,s3222,s3223,s3231,s3232,s3233}, {s3311,s3312,s3313,s3321,s3322,s3323,s3331,s3332,s3333}}; (*Define R Matrix via Whirl 1*) r=ro[s]; (*Whirl 2*) nul1=Flatten[s-ro[r]]; (*Cap as Vector*) pc=Flatten[p]; (*Cup as Vector*) qc=Flatten[q]; (*Twist*) nul2a=Flatten[pc.s-pc*f]; (*Twist*) nul2b=Flatten[pc.r-pc/f]; (*Id*) kr=IdentityMatrix[n^2]; (*Poke*) nul3=Flatten[s.r-kr]; (*Id*) id=IdentityMatrix[n]; (*S x Id*) s1=Partition[Flatten[Transpose[Outer[Times,s,id],{1,3,2,4}]],n^3]; (*Id x S*) s2=Partition[Flatten[Transpose[Outer[Times,id,s],{1,3,2,4}]],n^3]; (*Slide*) nul4=Flatten[s1.s2.s1-s2.s1.s2]; (* Now solve for sijkl - if you dare! *) (* nul1 and nul2a/b are linear, try them first. *) g=(Sqrt[5]+1)/2; f=I*(2*g+1); S=I*{ {g-1,0,-g/2,0,g/2,g/2,-g/2,-g/2,-g/4}, {0,g-1,-g,0,g,g,-g,-g,-g/2}, {0,0,-1,0,g,g,-g,-g,-g/2}, {0,0,g,g-1,-g,-g,g,g,g/2}, {0,0,g,0,-1,-g,g,g,g/2}, {0,0,0,0,0,g-1,0,0,0}, {0,0,-g,0,g,g,-1,-g,-g/2}, {0,0,0,0,0,0,0,g-1,0}, {0,0,0,0,0,0,0,0,g-1}}; (* s=S is a solution I know but sometimes not find. *) HTH. -- Hauke Reddmann <:-EX8 fc3a501 at uni-hamburg.de Er-a svo gott sem gott kveða öl alda sonum, því að færra veit er fleira drekkur síns til geðs gumi.