Re: Can't integrate sqrt(a+b*cos(t)+c*cos(2t))
- To: mathgroup at smc.vnet.net
- Subject: [mg90780] Re: Can't integrate sqrt(a+b*cos(t)+c*cos(2t))
- From: Grischika at mail.ru
- Date: Thu, 24 Jul 2008 04:51:37 -0400 (EDT)
- References: <g6710s$sb6$1@smc.vnet.net>
On 23 =C9=C0=CC, 13:26, Valeri Astanoff <astan... at gmail.com> wrote: > Good day, > > Neither Mathematica 6 nor anyone here can integrate this: > > In[1]:= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[1]= Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > > In[2]:= NIntegrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi}] > Out[2]= 6.72288 > > I know the exact result: > > In[3]:= =9A(1/5^(3/4))*(Sqrt[2]*(10*EllipticE[(1/10)*(5 - Sqrt[5])] - > =9A =9A =9A =9A 10*EllipticK[(1/10)*(5 - Sqrt[5])] + (5 + 3*Sqrt[5])* > =9A =9A =9A =9A EllipticPi[(1/10)*(5 - 3*Sqrt[5]), (1/10)*(5 - Sqrt[5])])= )//N > Out[3]= 6.72288 > > but I would like to prove it. > > Thanks in advance to the samaritan experts... > > V.Astanoff Or even beter eq = Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, 0, Pi/2}] + Integrate[Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t, Pi/2, Pi}]; FullSimplify[eq] Out: (Sqrt[2 + 4*I]*((-5*I)*EllipticE[-3/5 - (4*I)/5] + (2 + I)*Sqrt[5]*EllipticE[-3/5 + (4*I)/5] - (12 - 4*I)*EllipticK[-3/5 - (4*I)/5] + (6 - 2*I)*Sqrt[5]* EllipticK[8/5 - (4*I)/5] + (4*I)*Sqrt[5]*EllipticPi[1/5 + (2*I)/ 5, -3/5 + (4*I)/5] + (8 + 4*I)*EllipticPi[1 - 2*I, -3/5 - (4*I)/ 5]))/ 5 In[]=N@% Out: 6.72288+ 1.05693*10^-14* I Moreover, you can replace Cos[2t]->Cos[t]^2-Sin[t]^2 so Integrate[ Sqrt[5 - 4*Cos[t] + Cos[2*t]] /. Cos[2 t] -> Cos[t]^2 - Sin[t]^2, {t, 0, Pi}]; gives result as above 6.72288+ 8.76799*10^-15 I And the last solution is may be the best one: Integrate[ TrigExpand/@Sqrt[5 - 4*Cos[t] + Cos[2*t]], {t,0, Pi}];