Re: HypergeometricPFQ - simplification
- To: mathgroup at smc.vnet.net
- Subject: [mg90808] Re: HypergeometricPFQ - simplification
- From: janos <janostothmeister at gmail.com>
- Date: Fri, 25 Jul 2008 06:12:39 -0400 (EDT)
- References: <g1gqir$1fn$1@smc.vnet.net> <g27r4b$d6g$1@smc.vnet.net>
Thanks, Oleksander, I could only now return to the problem, but I appreciate very much your solution. However, I keep saying, that a symbol manipulation system is the least appropriate to manipulate symbols :) Or, these kinds of problems are much more complicated than to solve a system of nonlinear PDEs. Best regards, Janos On j=FAn. 5, 06:47, sashap <pav... at gmail.com> wrote: > On May 27, 2:16 pm, janos <janostothmeis... at gmail.com> wrote: > > > > > Could anyone show using Mathematica that the expression > > > -2/27 + (253*HypergeometricPFQ[{-1/2, -1/6, 1/6}, {4/3, 5/3}, -1/729])/ > > 108 - (911*HypergeometricPFQ[{1/2, 5/6, 7/6}, {7/3, 8/3}, -1/729])/ > > 6298560 + > > (73*HypergeometricPFQ[{3/2, 11/6, 13/6}, {10/3, 11/3}, -1/729])/ > > 9795520512 > > > is equal to > > > (-2*(-1 + 10*Sqrt[10]))/27? (Using, say, TraceInternal, to see what is > > going on.) > > > Thank you, > > > Janos > > Dear Janos, > > A way to prove this in Mathematica takes couple of lines of code: > > In[1]:= $Version > > Out[1]= "6.0 for Microsoft Windows (32-bit) (March 13, 2008)" > > (* your expression *) > In[2]:= expr = -(2/27) + > 253/108 HypergeometricPFQ[{-(1/2), -(1/6), 1/6}, {4/3, 5/3}, -(1/ > 729)] - ( > 911 HypergeometricPFQ[{1/2, 5/6, 7/6}, {7/3, 8/3}, -(1/729)])/ > 6298560 + ( > 73 HypergeometricPFQ[{3/2, 11/6, 13/6}, {10/3, 11/3}, -(1/729)])/ > 9795520512; > > Now define > > In[3]:= e1 = ({D[ > HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - > 1, -z^3], z], > D[HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - > 1, -z^3], z, z], > D[HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - > 1, -z^3], z, z, z]} /. {a -> 0, z -> 1/9} // Expand) > > Out[3]= {(35/144)* > HypergeometricPFQ[{-(1/2), -(1/6), 1/6}, {4/3, 5/3}, -(1/729)], > (35/8)* > HypergeometricPFQ[{-(1/2), -(1/6), 1/6}, {4/3, > 5/3}, -(1/729)] - (7* > HypergeometricPFQ[{1/2, 5/6, 7/6}, {7/3, 8/3}, -(1/729)])/ > 124416, (315/8)* > HypergeometricPFQ[{-(1/2), -(1/6), 1/6}, {4/3, 5/3}, -(1/729)] - > (7*HypergeometricPFQ[{1/2, 5/6, 7/6}, {7/3, 8/3}, -(1/729)])/ > 2304 + > (35*HypergeometricPFQ[{3/2, 11/6, 13/6}, {10/3, > 11/3}, -(1/729)])/214990848} > > Now repeat the same with variable a set to 0 from the outset: > > In[4]:= e2 = > FullSimplify[ > With[{a = 0}, {D[ > HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - > 1, -z^3], z], > D[HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - > 1, -z^3], z, z], > D[HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - > 1, -z^3], z, z, z]}] /. z -> 1/9] > > Out[4]= {Sqrt[ > 11236809 + 778034 Sqrt[73] - > 2000 Sqrt[12368090 + 7780340 Sqrt[73]]]/1458, > 7/324 Sqrt[ > 21873 + 10658 Sqrt[73] - 200 Sqrt[-781270 + 106580 Sqrt[73]]], > 35/36 Sqrt[73/2 (15 + Sqrt[73]) + 10 Sqrt[5 (595 + 73 Sqrt[73])]]} > > Now solve for hypergeometric functions: > > In[7]:= ru = > Thread[Union[Cases[e1, _HypergeometricPFQ, Infinity]] -> {h1, h2, > h3}]; > > and substitute back into your original expression: > > In[8]:= FullSimplify[ > expr /. (Solve[((e1 - e2) /. ru) == 0, {h1, h2, h3}] /. (Reverse /@ > ru))] > > Out[8]= {2/27 (-1 + 10 Sqrt[10])} > > Hope this helps, > Oleksandr Pavlyk > Wolfram Research