ParametricPlot precision problem
- To: mathgroup at smc.vnet.net
- Subject: [mg90869] ParametricPlot precision problem
- From: "Cristina Ballantine" <cballant at holycross.edu>
- Date: Sun, 27 Jul 2008 02:31:07 -0400 (EDT)
Hi, With the code below, plot1 gives a line from -a to 0 (in the complex plane). plot2 should give the the symmetric of plot1 with respect to the unit circle, i.e., a line from -1/Conjugate[a] to infinity (same slope as line from -a to 0). I cannot get plot2 to give the correct line. Any help is very much appreciated. Cristina --------------------------------- r := 1/3 alpha := Pi/3 a := r*Exp[I*alpha] n := 3 B[z_] := z^n*((Conjugate[a]/a)*(a^2 - z^2)/(1 - (Conjugate[a])^2*z^2))^n b := 1/(r*Sqrt[2])*Sqrt[3 - r^4 - Sqrt[(3 - r^4)^2 - 4*r^4]]* Exp[I*alpha] s := -Abs[B[b]] z1[t_] := -(t/27) - ((1 + I Sqrt[3]) (27 - 27 (-1)^(1/3) - t^2))/( 27 2^(2/3) (19602 t - 19602 (-1)^(1/3) t + 2 t^3 + Sqrt[ 4 (27 - 27 (-1)^(1/3) - t^2)^3 + (19602 t - 19602 (-1)^(1/3) t + 2 t^3)^2])^( 1/3)) + ((1 - I Sqrt[3]) (19602 t - 19602 (-1)^(1/3) t + 2 t^3 + Sqrt[4 (27 - 27 (-1)^(1/3) - t^2)^3 + (19602 t - 19602 (-1)^(1/3) t + 2 t^3)^2])^(1/3))/(54 2^(1/3)) plot1:=ParametricPlot[{Re[z1[t]], Im[z1[t]]}, {t, s, 0}, PlotStyle -> {Orange, Thick}, PlotPoints -> 100, MaxRecursion -> 5, PlotRange -> 1, WorkingPrecision -> 100] plot2 := ParametricPlot[{Re[1/Conjugate[z1[t]]], Im[1/Conjugate[z1[t]]]}, {t, s, 0}, PlotStyle -> {Orange, Thick}, PlotPoints -> 2000, MaxRecursion -> 15, PlotRange -> All, WorkingPrecision -> 100]