Manipulate with specified step size
- To: mathgroup at smc.vnet.net
- Subject: [mg90872] Manipulate with specified step size
- From: J Davis <texasAUtiger at gmail.com>
- Date: Sun, 27 Jul 2008 02:31:41 -0400 (EDT)
I wanted to revisit the issue in this thread: http://groups.google.com/group/comp.soft-sys.math.mathematica/browse_thread/thread/4e94adfcb4cd4491/303f37e538bcd6e1?lnk=gst&q=manipulate+play#303f37e538bcd6e1 I have the following: conv[f_, g_, t_] = \!\( \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(f[s] g[t - s] \[DifferentialD]s\)\); x[t_] = UnitStep[t - 2] - UnitStep[t - 3]; y[t_] = UnitStep[t - 2] - UnitStep[t - 3]; Manipulate[ Show[ Plot[{Tooltip[x[s], "f(s)"], Tooltip[y[t - s], "g(t-s)"]}, {s, 0, 8}, PlotRange -> {{-.01, 8}, {-.4, 2}}, PlotStyle -> {{GrayLevel[.85]}, {GrayLevel[.85]}}, Exclusions -> None], Plot[Tooltip[x[s] y[t - s], "f(s)g(t-s)"], {s, t, 8.1}, PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black, Exclusions -> None], Plot[Evaluate[x[s] y[t - s]], {s, -.01, t}, Filling -> Axis, PlotRange -> {{0, 8.1}, {0, 16}}, PlotStyle -> Black, Exclusions -> None], Plot[Evaluate[Tooltip[conv[x, y, z], "(f*g)(t)"]], {z, -.01, t}, PlotRange -> {{-.01, 8}, {0, 16}}, PlotStyle -> Blue, Exclusions -> None], Graphics[{Dashed, Line[{{t, -6}, {t, conv[x, y, t]}}]}], Graphics[ Text[Style["t", Italic, Bold, Blue, 14], {t - .1, -6 + .2}]] ] , {t, 0, 8, 1} When I move the slider the dynamics are slow to evaluate. I would be content to simply "play" the animation at the discrete values t=0 to t=8 in increments of 1. However, I have been unable to obtain that result. Suggestions? Thanks, John PS I am also surprised that these computations are slow since these are rather simple functions involved in the convolution.