Re: Solve can't solve
- To: mathgroup at smc.vnet.net
- Subject: [mg89311] Re: Solve can't solve
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Thu, 5 Jun 2008 00:43:23 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <g1j6ib$qok$1@smc.vnet.net>
Paco wrote: > (Mathematica 6.0.0 Windows XP) > > I'm trying to solve this: > > Assuming[0 < p0 < 1 && 0 < p1 < 1 && 0 < p2 < 1 && 0 < p3 < 1 && > 0 < tau0 < 1 && 0 < tau1 < 1 && 0 < tau2 < 1 && 0 < tau3 < 1, > Solve[{p0 == > 1 - (1 - tau0)^(n - 1) (1 - tau1)^n (1 - tau2)^n (1 - tau3)^n, > p1 == 1 - (1 - tau0)^n (1 - tau1)^(n - 1) (1 - tau2)^n (1 - tau3)^ > n , p2 == > 1 - (1 - tau0)^n (1 - tau1)^n (1 - tau2)^(n - 1) (1 - tau3)^n, > p3 == 1 - (1 - tau0)^n (1 - tau1)^n (1 - tau2)^n (1 - tau3)^( > n - 1), tau0 == 1/\!\( > \*UnderoverscriptBox[\(\[Sum]\), \(j = 0\), \(4\)]\((\((1 + > FractionBox[\(1\), \(1 - \((1 - p0)\)\)] \( > \*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(16\ > \*SuperscriptBox[\(2\), \(j\)]\)] > \*FractionBox[\(16\ > \*SuperscriptBox[\(2\), \(j\)]\ \ - \ k\), \(16\ > \*SuperscriptBox[\(2\), \(j\)]\)]\))\)\ > \*SuperscriptBox[\(p0\), \(j\)])\)\) (1 - p0^5)/(1 - p0), > tau1 == 1/\!\( > \*UnderoverscriptBox[\(\[Sum]\), \(j = 0\), \(4\)]\((\((1 + > FractionBox[\(1\), \(1 - \((1 - p1)\)\)] \( > \*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(16\ > \*SuperscriptBox[\(2\), \(j\)]\)] > \*FractionBox[\(16\ > \*SuperscriptBox[\(2\), \(j\)]\ \ - \ k\), \(16\ > \*SuperscriptBox[\(2\), \(j\)]\)]\))\)\ > \*SuperscriptBox[\(p1\), \(j\)])\)\) (1 - p1^5)/(1 - p1), > tau2 == 1/\!\( > \*UnderoverscriptBox[\(\[Sum]\), \(j = 0\), \(4\)]\((\((1 + > FractionBox[\(1\), \(1 - \((1 - p2)\)\)] \( > \*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(8\ > \*SuperscriptBox[\(2\), \(j\)]\)] > \*FractionBox[\(8\ > \*SuperscriptBox[\(2\), \(j\)]\ \ - \ k\), \(8\ > \*SuperscriptBox[\(2\), \(j\)]\)]\))\)\ > \*SuperscriptBox[\(p2\), \(j\)])\)\) (1 - p2^5)/(1 - p2), > tau3 == 1/\!\( > \*UnderoverscriptBox[\(\[Sum]\), \(j = 0\), \(4\)]\((\((1 + > FractionBox[\(1\), \(1 - \((1 - p3)\)\)] \( > \*UnderoverscriptBox[\(\[Sum]\), \(k = 1\), \(4\ > \*SuperscriptBox[\(2\), \(j\)]\)] > \*FractionBox[\(4\ > \*SuperscriptBox[\(2\), \(j\)]\ \ - \ k\), \(4\ > \*SuperscriptBox[\(2\), \(j\)]\)]\))\)\ > \*SuperscriptBox[\(p3\), \(j\)])\)\) (1 - p3^5)/(1 - p3)}, {p0, p1, > p2, p3, tau0, tau1, tau2, tau3}]] > > With Solve[], I get this message: > "No more memory available. > Mathematica kernel has shut down. > Try quitting other applications and then retry." > > I tried with NSolve[] and the result was the same. > > I discovered that if I give a value to n, I get something with FindRoot[] but results are false (I tried several init values for p0,p1,etc - results are different and all are wrong). > > Does anybody know what I'm doing wrong? The code you posted contains some low-level display-only expressions such as FractionBox[1, 1 - (1 - p0)] rather than the algebraically-evaluable expression 1/(1 - (1 - p0)). You should correct that first. Hope this helps, -- Jean-Marc