Re: HypergeometricPFQ - simplification
- To: mathgroup at smc.vnet.net
- Subject: [mg89317] Re: HypergeometricPFQ - simplification
- From: sashap <pavlyk at gmail.com>
- Date: Thu, 5 Jun 2008 00:44:29 -0400 (EDT)
- References: <g1gqir$1fn$1@smc.vnet.net>
On May 27, 2:16 pm, janos <janostothmeis... at gmail.com> wrote: > Could anyone show using Mathematica that the expression > > -2/27 + (253*HypergeometricPFQ[{-1/2, -1/6, 1/6}, {4/3, 5/3}, -1/729])/ > 108 - (911*HypergeometricPFQ[{1/2, 5/6, 7/6}, {7/3, 8/3}, -1/729])/ > 6298560 + > (73*HypergeometricPFQ[{3/2, 11/6, 13/6}, {10/3, 11/3}, -1/729])/ > 9795520512 > > is equal to > > (-2*(-1 + 10*Sqrt[10]))/27? (Using, say, TraceInternal, to see what is > going on.) > > Thank you, > > Janos Dear Janos, A way to prove this in Mathematica takes couple of lines of code: In[1]:= $Version Out[1]= "6.0 for Microsoft Windows (32-bit) (March 13, 2008)" (* your expression *) In[2]:= expr = -(2/27) + 253/108 HypergeometricPFQ[{-(1/2), -(1/6), 1/6}, {4/3, 5/3}, -(1/ 729)] - ( 911 HypergeometricPFQ[{1/2, 5/6, 7/6}, {7/3, 8/3}, -(1/729)])/ 6298560 + ( 73 HypergeometricPFQ[{3/2, 11/6, 13/6}, {10/3, 11/3}, -(1/729)])/ 9795520512; Now define In[3]:= e1 = ({D[ HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - 1, -z^3], z], D[HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - 1, -z^3], z, z], D[HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - 1, -z^3], z, z, z]} /. {a -> 0, z -> 1/9} // Expand) Out[3]= {(35/144)* HypergeometricPFQ[{-(1/2), -(1/6), 1/6}, {4/3, 5/3}, -(1/729)], (35/8)* HypergeometricPFQ[{-(1/2), -(1/6), 1/6}, {4/3, 5/3}, -(1/729)] - (7* HypergeometricPFQ[{1/2, 5/6, 7/6}, {7/3, 8/3}, -(1/729)])/ 124416, (315/8)* HypergeometricPFQ[{-(1/2), -(1/6), 1/6}, {4/3, 5/3}, -(1/729)] - (7*HypergeometricPFQ[{1/2, 5/6, 7/6}, {7/3, 8/3}, -(1/729)])/ 2304 + (35*HypergeometricPFQ[{3/2, 11/6, 13/6}, {10/3, 11/3}, -(1/729)])/214990848} Now repeat the same with variable a set to 0 from the outset: In[4]:= e2 = FullSimplify[ With[{a = 0}, {D[ HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - 1, -z^3], z], D[HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - 1, -z^3], z, z], D[HypergeometricPFQ[{-(1/2), -(1/6), 1/6 + a} - 1, {4/3, 5/3} - 1, -z^3], z, z, z]}] /. z -> 1/9] Out[4]= {Sqrt[ 11236809 + 778034 Sqrt[73] - 2000 Sqrt[12368090 + 7780340 Sqrt[73]]]/1458, 7/324 Sqrt[ 21873 + 10658 Sqrt[73] - 200 Sqrt[-781270 + 106580 Sqrt[73]]], 35/36 Sqrt[73/2 (15 + Sqrt[73]) + 10 Sqrt[5 (595 + 73 Sqrt[73])]]} Now solve for hypergeometric functions: In[7]:= ru = Thread[Union[Cases[e1, _HypergeometricPFQ, Infinity]] -> {h1, h2, h3}]; and substitute back into your original expression: In[8]:= FullSimplify[ expr /. (Solve[((e1 - e2) /. ru) == 0, {h1, h2, h3}] /. (Reverse /@ ru))] Out[8]= {2/27 (-1 + 10 Sqrt[10])} Hope this helps, Oleksandr Pavlyk Wolfram Research